Example #1
0
                        default=True,
                        help='using masked data or not')
    parser.add_argument('--use_glove',
                        type=str2bool,
                        default=True,
                        help='Using Glove embedding or not')
    parser.add_argument('--use_extra_feature',
                        type=str2bool,
                        default=True,
                        help='Using extra feature, e.g. ' + 'NER, POS, ')

    args = parser.parse_args()
    file_name = args.file_name
    is_masked = args.is_masked
    use_glove = args.use_glove
    use_extra_feature = args.use_extra_feature
    options_file = 'data/elmo_2x4096_512_2048cnn_2xhighway_options.json'
    weight_file = 'data/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5'
    glove_file = 'data/glove.840B.300d.txt'
    logger = config_logger('Preprocess')

    preprocesser = Preprocesser(file_name,
                                logger,
                                is_masked=is_masked,
                                use_glove=use_glove,
                                use_extra_feature=use_extra_feature,
                                options_file=options_file,
                                weight_file=weight_file,
                                glove_file=glove_file)
    preprocesser.preprocess()
Example #2
0
File: BAG.py Project: wujindou/BAG
    hops = args.hop_num
    epochs = args.epochs
    batch_size = args.batch_size
    training_info_interval = args.info_interval
    dropout = args.dropout
    encoding_size = args.encoding_size
    pos_emb_size = args.pos_emb_size
    ner_emb_size = args.ner_emb_size

    options_file = 'data/elmo_2x4096_512_2048cnn_2xhighway_options.json'
    weight_file = 'data/elmo_2x4096_512_2048cnn_2xhighway_weights'
    encoding_type_map = {'lstm': 'lstm', 'linear': 'linear'}

    model_name = 'BAG'
    if evaluation_mode:
        logger = config_logger('evaluation/' + model_name)
    else:
        logger = config_logger('BAG')

    model_path = os.getcwd() + '/models/' + model_name + '/'
    if not os.path.exists(model_path):
        os.makedirs(model_path)

    tokenize = TweetTokenizer().tokenize
    logger.info('Hop number is %s', hops)
    logger.info('Learning rate is %s', learning_rate)
    logger.info('Training epoch is %s', epochs)
    logger.info('Batch size is %s', batch_size)
    logger.info('Dropout rate is %f', dropout)
    logger.info('Encoding size for nodes and query feature is %s',
                encoding_size)
Example #3
0
    parser.add_argument('--patience',
                        type=int,
                        default=5,
                        help='Epoch early stopping patience')

    args = parser.parse_args()
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    encoding_type_map = {'lstm': 'lstm', 'linear': 'linear'}
    best_res = {'acc': 0.0}
    pred_res = []

    model_name = 'BAG-pytorch'
    if args.evaluation_mode:
        logger = config_logger('evaluation-pytorch/' + model_name)
    else:
        logger = config_logger('BAG-pytorch')

    model_path = os.getcwd() + '/models-pytorch/' + model_name + '/'
    if not os.path.exists(model_path):
        os.makedirs(model_path)
    model_path = os.path.join(model_path, 'best_model.bin')

    for item in vars(args).items():
        logger.info('%s : %s', item[0], str(item[1]))
    '''Check whether preprocessed files are existed'''
    train_file_name_prefix, fileExist = checkPreprocessFile(
        args.in_file, args.add_query_node)
    if not fileExist:
        logger.info('Cannot find preprocess data %s, program will shut down.',
Example #4
0
    hops = args.hop_num
    epochs = args.epochs
    batch_size = args.batch_size
    training_info_interval = args.info_interval
    dropout = args.dropout
    encoding_size = args.encoding_size
    pos_emb_size = args.pos_emb_size
    ner_emb_size = args.ner_emb_size

    options_file = 'data/elmo_2x4096_512_2048cnn_2xhighway_options.json'
    weight_file = 'data/elmo_2x4096_512_2048cnn_2xhighway_weights'
    encoding_type_map = {'lstm': 'lstm', 'linear': 'linear'}

    model_name = 'CQ-GCN'
    if evaluation_mode:
        logger = config_logger('evaluation/' + model_name)
    else:
        logger = config_logger('CQ_GCN')

    model_path = os.getcwd() + '/best_models/' + model_name + '/'
    if not os.path.exists(model_path):
        os.makedirs(model_path)

    tokenize = TweetTokenizer().tokenize
    logger.info('Hop number is %s', hops)
    logger.info('Learning rate is %s', learning_rate)
    logger.info('Training epoch is %s', epochs)
    logger.info('Batch size is %s', batch_size)
    logger.info('Dropout rate is %f', dropout)
    logger.info('Encoding size for nodes and query feature is %s',
                encoding_size)
Example #5
0
    hops = args.hop_num
    epochs = args.epochs
    batch_size = args.batch_size
    training_info_interval = args.info_interval
    dropout = args.dropout
    encoding_size = args.encoding_size
    pos_emb_size = args.pos_emb_size
    ner_emb_size = args.ner_emb_size

    options_file = 'data/elmo_2x4096_512_2048cnn_2xhighway_options.json'
    weight_file = 'data/elmo_2x4096_512_2048cnn_2xhighway_weights'
    encoding_type_map = {'lstm': 'lstm', 'linear': 'linear'}

    model_name = 'PathBasedGCN'
    if evaluation_mode:
        logger = config_logger('evaluation/' + model_name)
    else:
        logger = config_logger('PathBasedGCN')

    model_path = os.getcwd() + '/models/' + model_name + '/'
    if not os.path.exists(model_path):
        os.makedirs(model_path)

    tokenize = TweetTokenizer().tokenize
    logger.info('Hop number is %s', hops)
    logger.info('Learning rate is %s', learning_rate)
    logger.info('Training epoch is %s', epochs)
    logger.info('Batch size is %s', batch_size)
    logger.info('Dropout rate is %f', dropout)
    logger.info('Encoding size for nodes and query feature is %s',
                encoding_size)