def main(): args = args_parser.parse_args() if args.sub_command == 'onnx2tnn': onnx_path = parse_path.parse_path(args.onnx_path) output_dir = parse_path.parse_path(args.output_dir) version = args.version optimize = args.optimize half = args.half onnx_path = parse_path.parse_path(onnx_path) output_dir = parse_path.parse_path(output_dir) onnx2tnn.convert(onnx_path, output_dir, version, optimize, half) elif args.sub_command == 'caffe2tnn': proto_path = parse_path.parse_path(args.proto_path) model_path = parse_path.parse_path(args.model_path) output_dir = parse_path.parse_path(args.output_dir) version = args.version optimize = args.optimize half = args.half caffe2tnn.convert(proto_path, model_path, output_dir, version, optimize, half) elif args.sub_command == 'tf2tnn': tf_path = parse_path.parse_path(args.tf_path) output_dir = parse_path.parse_path(args.output_dir) input_names = args.input_names output_names = args.output_names version = args.version optimize = args.optimize half = args.half tf2tnn.convert(tf_path, input_names, output_names, output_dir, version, optimize, half) else: print("Do not support convert!")
def main(): args = args_parser.parse_args() if args.sub_command == 'onnx2tnn': onnx_path = parse_path.parse_path(args.onnx_path) output_dir = parse_path.parse_path(args.output_dir) input_names = args.input_names version = args.version optimize = args.optimize half = args.half align = args.align input_file = args.input_file_path ref_file = args.refer_file_path onnx_path = parse_path.parse_path(onnx_path) output_dir = parse_path.parse_path(output_dir) input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) onnx2tnn.convert(onnx_path, output_dir, version, optimize, half, align, input_file, ref_file, input_names) elif args.sub_command == 'caffe2tnn': proto_path = parse_path.parse_path(args.proto_path) model_path = parse_path.parse_path(args.model_path) output_dir = parse_path.parse_path(args.output_dir) version = args.version optimize = args.optimize half = args.half align = args.align input_file = args.input_file_path ref_file = args.refer_file_path input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) caffe2tnn.convert(proto_path, model_path, output_dir, version, optimize, half, align, input_file, ref_file) elif args.sub_command == 'tf2tnn': tf_path = parse_path.parse_path(args.tf_path) output_dir = parse_path.parse_path(args.output_dir) input_names = args.input_names output_names = args.output_names version = args.version optimize = args.optimize half = args.half align = args.align not_fold_const = args.not_fold_const input_file = args.input_file_path ref_file = args.refer_file_path input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) tf2tnn.convert(tf_path, input_names, output_names, output_dir, version, optimize, half, align, not_fold_const, input_file, ref_file) else: print("Do not support convert!")
def main(): parser = args_parser.parse_args() args = parser.parse_args() debug_mode: bool = args.debug if debug_mode is True: logging.basicConfig(level=logging.DEBUG, format='') else: logging.basicConfig(level=logging.INFO, format='') logging.info("\n{} convert model, please wait a moment {}\n".format( "-" * 10, "-" * 10)) if args.sub_command == 'onnx2tnn': onnx_path = parse_path.parse_path(args.onnx_path) output_dir = parse_path.parse_path(args.output_dir) version = args.version optimize = args.optimize half = args.half align = args.align input_file = args.input_file_path ref_file = args.refer_file_path onnx_path = parse_path.parse_path(onnx_path) output_dir = parse_path.parse_path(output_dir) input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) input_names = None if args.input_names is not None: input_names = "" for item in args.input_names: input_names += (item + " ") try: onnx2tnn.convert(onnx_path, output_dir, version, optimize, half, align, input_file, ref_file, input_names, debug_mode=debug_mode) except Exception as err: logging.error("Conversion to tnn failed :(\n") logging.error(err) elif args.sub_command == 'caffe2tnn': proto_path = parse_path.parse_path(args.proto_path) model_path = parse_path.parse_path(args.model_path) output_dir = parse_path.parse_path(args.output_dir) version = args.version optimize = args.optimize half = args.half align = args.align input_file = args.input_file_path ref_file = args.refer_file_path input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) try: caffe2tnn.convert(proto_path, model_path, output_dir, version, optimize, half, align, input_file, ref_file, debug_mode=debug_mode) except Exception as err: logging.error("Conversion to tnn failed :(\n") logging.error(err) elif args.sub_command == 'tf2tnn': tf_path = parse_path.parse_path(args.tf_path) output_dir = parse_path.parse_path(args.output_dir) input_names = args.input_names output_names = args.output_names version = args.version optimize = args.optimize half = args.half align = args.align not_fold_const = args.not_fold_const input_file = args.input_file_path ref_file = args.refer_file_path input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) try: tf2tnn.convert(tf_path, input_names, output_names, output_dir, version, optimize, half, align, not_fold_const, input_file, ref_file, debug_mode=debug_mode) except Exception as err: logging.error("\nConversion to tnn failed :(\n") logging.error(err) elif args.sub_command == 'tflite2tnn': tf_path = parse_path.parse_path(args.tf_path) output_dir = parse_path.parse_path(args.output_dir) version = args.version align = args.align input_file = args.input_file_path ref_file = args.refer_file_path input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) try: tflite2tnn.convert(tf_path, output_dir, version, align, input_file, ref_file, debug_mode=debug_mode) except Exception as err: logging.error("\n Conversion to tnn failed :(\n") logging.error(err) elif args.sub_command is None: parser.print_help() else: logging.info("Do not support convert!")
def main(): parser = args_parser.parse_args() args = parser.parse_args() logging.info("\n{} convert model, please wait a moment {}\n".format( "-" * 10, "-" * 10)) if args.sub_command == 'onnx2tnn': onnx_path = parse_path.parse_path(args.onnx_path) output_dir = parse_path.parse_path(args.output_dir) input_names = args.input_names version = args.version optimize = args.optimize half = args.half align = args.align input_file = args.input_file_path ref_file = args.refer_file_path onnx_path = parse_path.parse_path(onnx_path) output_dir = parse_path.parse_path(output_dir) input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) try: onnx2tnn.convert(onnx_path, output_dir, version, optimize, half, align, input_file, ref_file, input_names) except Exception as err: logging.error("Conversion to tnn failed :(\n") elif args.sub_command == 'caffe2tnn': proto_path = parse_path.parse_path(args.proto_path) model_path = parse_path.parse_path(args.model_path) output_dir = parse_path.parse_path(args.output_dir) version = args.version optimize = args.optimize half = args.half align = args.align input_file = args.input_file_path ref_file = args.refer_file_path input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) try: caffe2tnn.convert(proto_path, model_path, output_dir, version, optimize, half, align, input_file, ref_file) except Exception as err: logging.error("Conversion to tnn failed :(\n") elif args.sub_command == 'tf2tnn': tf_path = parse_path.parse_path(args.tf_path) output_dir = parse_path.parse_path(args.output_dir) input_names = args.input_names output_names = args.output_names version = args.version optimize = args.optimize half = args.half align = args.align not_fold_const = args.not_fold_const input_file = args.input_file_path ref_file = args.refer_file_path input_file = parse_path.parse_path(input_file) ref_file = parse_path.parse_path(ref_file) try: tf2tnn.convert(tf_path, input_names, output_names, output_dir, version, optimize, half, align, not_fold_const, input_file, ref_file) except Exception as err: logging.error("\nConversion to tnn failed :(\n") elif args.sub_command is None: parser.print_help() else: logging.info("Do not support convert!")
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping from pytorch_lightning.loggers.tensorboard import TensorBoardLogger from models.etm import ETM from utils.args_parser import parse_args, flatten_cfg, mkdir, save_yaml, newest from utils.constants import Cte import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-f', '--config_file', default='params/trainer.yaml', type=str) args = parser.parse_args() cfg = parse_args(args.config_file) pl.seed_everything(cfg['seed']) # %% Load dataset data_module = None if cfg['dataset']['name'] == Cte.NG: from datasets.news_group import NewsGroupDataModule data_module = NewsGroupDataModule(**cfg['dataset']['params']) assert data_module is not None cfg['model']['params']['vocab_size'] = data_module.vocab_size # %% Load model model = ETM(**cfg['model']['params'])