def main() -> None: input_dir, judgement_year, dividing_point = parse_arguments() files_to_be_processed = get_files_to_be_processed(input_dir) numbers, references_number, detriment_words_number = process_files( files_to_be_processed, input_dir, judgement_year) exercise1(numbers, judgement_year) exercise2(numbers, dividing_point, judgement_year) exercise3(references_number, judgement_year) exercise4(detriment_words_number, judgement_year)
def main(cl_args): args = parse_arguments(cl_args) run_all( args.emb_models, args.data_paths, args.folds, args.sizes, args.classifiers, args.ptv_names, )
def main(): input_dir, judgement_year = parse_arguments() create_index_with_analyzer() files = get_files_to_be_processed(input_dir) for file in tqdm(files, mininterval=15, unit='files'): extract_and_upload_data(file, judgement_year, INDEX_DATA_URL, HEADERS) save_data( 'Word {} occurred {} times in judgements from year {}.'.format( DETRIMENT_WORD, count_detriment_words(), judgement_year), 'exercise-6.txt') save_data( 'Given phrase has occurred {} times in judgements from year {}.'. format(find_phrase(PHRASE, 0), judgement_year), 'exercise-7.txt') save_data( 'Given phrase has occurred {} times in judgements from year {}.'. format(find_phrase(PHRASE, 2), judgement_year), 'exercise-8.txt') save_data(search_top_judges(NUMBER_OF_JUDGES, judgement_year), 'exercise-9.txt') create_bar_chart(prepare_bar_chart_data(judgement_year), 'exercise-10.png', judgement_year)
-- Interspersed Sharing Task with Four Hidden Layers """ import os import sys sys.path.append(os.path.abspath(os.path.dirname(__file__) + '/' + '../..')) from Experiments.experiment import Experiment from Models.interspersed_sharing_four_hidden import InterspersedSharingModel from utils.argument_parser import parse_arguments from utils.data_utils.data_handler import fetch_data from utils.training_utils.task_set import Coupled EXPERIMENT_NAME = 'multi-interspersed-final' if __name__ == '__main__': args = parse_arguments() # Target tasks. task = Coupled.tasks[args.task_type] to_run = {('%s-%s' % (EXPERIMENT_NAME, args.task_type)): task} # These are the training sizes which we will test. training_sizes = [ 500, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 15000, 25000 ] for name, tasks in to_run.iteritems(): # Produce the training, validation, and test sets. x_train, x_validate, x_test, y_train, y_validate, y_test, task_ids = fetch_data( tasks)
from MlMerchant import MLMerchant from abstract_merchant import AbstractMerchant from ml_engines.rand_for import RandomForestEngine from utils.argument_parser import parse_arguments from utils.cross_validator import CrossValidator from utils.settingsbuilder import SettingsBuilder class RandomForestMerchant(AbstractMerchant): def get_cross_validator(self, settings): return CrossValidator(settings, RandomForestEngine()) def start_merchant(self): settings = SettingsBuilder() \ .with_data_file('rand_for_models.pkl') \ .build() ml_merchant = MLMerchant(settings, RandomForestEngine()) ml_merchant.initialize() return ml_merchant if __name__ == "__main__": args = parse_arguments('PriceWars Merchant doing Random Forest Regression') if args.train and args.buy and args.merchant and args.test and args.output: RandomForestMerchant().start_cross_validation(args) else: RandomForestMerchant().start_server(args)
from MlMerchant import MLMerchant from abstract_merchant import AbstractMerchant from ml_engines.log_reg import LogisticRegressionEngine from utils.argument_parser import parse_arguments from utils.cross_validator import CrossValidator from utils.settingsbuilder import SettingsBuilder class LogisticRegressionMerchant(AbstractMerchant): def get_cross_validator(self, settings): return CrossValidator(settings, LogisticRegressionEngine()) def start_merchant(self): settings = SettingsBuilder() \ .with_data_file('log_reg_models.pkl') \ .build() ml_merchant = MLMerchant(settings, LogisticRegressionEngine()) ml_merchant.initialize() return ml_merchant if __name__ == "__main__": args = parse_arguments('PriceWars Merchant doing Logistic Regression') if args.train and args.buy and args.merchant and args.test and args.output: LogisticRegressionMerchant().start_cross_validation(args) else: LogisticRegressionMerchant().start_server(args)
# Sort predictions according to IDs test_ids, y_pred = zip(*sorted(zip(ids_prediction, predictions))) else: # Visualize the histogram of data without outliers if params['visualize']: plot_distribution(input_data, 'input_data', verbose=True) # Initialize weight vector coefficients as zeros initial_w = np.zeros(input_data.shape[1]) # Train the model w, loss = least_squares_sgd(yb, input_data, initial_w, batch_size=params['batch_size'], max_iters=params['max_iters'], gamma=params['gamma'], loss_function=params['loss_function'], verbose=params['verbose']) y_pred = predict_labels(w, test_data) # Create a CSV with the predictions either if it was by splitting jets or not create_csv_submission(test_ids, y_pred, results_path + '/results.csv') if __name__ == '__main__': main(**vars(parse_arguments()))
from MlMerchant import MLMerchant from abstract_merchant import AbstractMerchant from ml_engines.mlp import MlpEngine from utils.argument_parser import parse_arguments from utils.cross_validator import CrossValidator from utils.settingsbuilder import SettingsBuilder class MlpMerchant(AbstractMerchant): def get_cross_validator(self, settings): return CrossValidator(settings, MlpEngine()) def start_merchant(self): settings = SettingsBuilder() \ .with_data_file('mlp_models.pkl') \ .build() ml_merchant = MLMerchant(settings, MlpEngine()) ml_merchant.initialize() return ml_merchant if __name__ == "__main__": args = parse_arguments('PriceWars Merchant doing MLP Regression') if args.train and args.buy and args.merchant and args.test and args.output: MlpMerchant().start_cross_validation(args) else: MlpMerchant().start_server(args)