name = cfg.video.split('/')[-1] video_writer = cv2.VideoWriter(f'results/videos/{name}', cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (frame_width, frame_height)) progress_bar = ProgressBar(40, num_frames) timer.reset() t_fps = 0 for i in range(num_frames): if i == 1: timer.start() frame_origin = vid.read()[1] img_h, img_w = frame_origin.shape[0:2] frame_trans = val_aug(frame_origin, cfg.img_size)[None, :] with timer.counter('forward'): class_p, box_p, coef_p, proto_p, anchors = sess.run(None, {input_name: frame_trans}) with timer.counter('nms'): ids_p, class_p, box_p, coef_p, proto_p = nms_numpy(class_p, box_p, coef_p, proto_p, anchors, cfg) with timer.counter('after_nms'): ids_p, class_p, boxes_p, masks_p = after_nms_numpy(ids_p, class_p, box_p, coef_p, proto_p, img_h, img_w, cfg) with timer.counter('save_img'): frame_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, frame_origin, cfg, fps=t_fps) if cfg.real_time:
def main(): parser = argparse.ArgumentParser(description='YOLACT Detection.') parser.add_argument('--weight', default='weights/best_30.5_res101_coco_392000.pth', type=str) parser.add_argument('--image', default=None, type=str, help='The folder of images for detecting.') parser.add_argument('--video', default=None, type=str, help='The path of the video to evaluate.') parser.add_argument('--img_size', type=int, default=544, help='The image size for validation.') parser.add_argument('--traditional_nms', default=False, action='store_true', help='Whether to use traditional nms.') parser.add_argument('--hide_mask', default=False, action='store_true', help='Hide masks in results.') parser.add_argument('--hide_bbox', default=False, action='store_true', help='Hide boxes in results.') parser.add_argument('--hide_score', default=False, action='store_true', help='Hide scores in results.') parser.add_argument('--cutout', default=False, action='store_true', help='Cut out each object and save.') parser.add_argument('--save_lincomb', default=False, action='store_true', help='Show the generating process of masks.') parser.add_argument('--no_crop', default=False, action='store_true', help='Do not crop the output masks with the predicted bounding box.') parser.add_argument('--real_time', default=False, action='store_true', help='Show the detection results real-timely.') parser.add_argument('--visual_thre', default=0.3, type=float, help='Detections with a score under this threshold will be removed.') args = parser.parse_args() prefix = re.findall(r'best_\d+\.\d+_', args.weight)[0] suffix = re.findall(r'_\d+\.pth', args.weight)[0] args.cfg = args.weight.split(prefix)[-1].split(suffix)[0] cfg = get_config(args, mode='detect') net = Yolact(cfg) net.load_weights(cfg.weight, cfg.cuda) net.eval() if cfg.cuda: cudnn.benchmark = True cudnn.fastest = True net = net.cuda() # detect images if cfg.image is not None: dataset = COCODetection(cfg, mode='detect') data_loader = data.DataLoader(dataset, 1, num_workers=2, shuffle=False, pin_memory=True, collate_fn=detect_collate) ds = len(data_loader) assert ds > 0, 'No .jpg images found.' progress_bar = ProgressBar(40, ds) timer.reset() for i, (img, img_origin, img_name) in enumerate(data_loader): if i == 1: timer.start() if cfg.cuda: img = img.cuda() img_h, img_w = img_origin.shape[0:2] with torch.no_grad(), timer.counter('forward'): class_p, box_p, coef_p, proto_p = net(img) with timer.counter('nms'): ids_p, class_p, box_p, coef_p, proto_p = nms(class_p, box_p, coef_p, proto_p, net.anchors, cfg) with timer.counter('after_nms'): ids_p, class_p, boxes_p, masks_p = after_nms(ids_p, class_p, box_p, coef_p, proto_p, img_h, img_w, cfg, img_name=img_name) with timer.counter('save_img'): img_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, img_origin, cfg, img_name=img_name) cv2.imwrite(f'results/images/{img_name}', img_numpy) aa = time.perf_counter() if i > 0: batch_time = aa - temp timer.add_batch_time(batch_time) temp = aa if i > 0: t_t, t_d, t_f, t_nms, t_an, t_si = timer.get_times(['batch', 'data', 'forward', 'nms', 'after_nms', 'save_img']) fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t bar_str = progress_bar.get_bar(i + 1) print(f'\rTesting: {bar_str} {i + 1}/{ds}, fps: {fps:.2f} | total fps: {t_fps:.2f} | ' f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | ' f't_after_nms: {t_an:.3f} | t_save_img: {t_si:.3f}', end='') print('\nFinished, saved in: results/images.') # detect videos elif cfg.video is not None: vid = cv2.VideoCapture(cfg.video) target_fps = round(vid.get(cv2.CAP_PROP_FPS)) frame_width = round(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = round(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) num_frames = round(vid.get(cv2.CAP_PROP_FRAME_COUNT)) name = cfg.video.split('/')[-1] video_writer = cv2.VideoWriter(f'results/videos/{name}', cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (frame_width, frame_height)) progress_bar = ProgressBar(40, num_frames) timer.reset() t_fps = 0 for i in range(num_frames): if i == 1: timer.start() frame_origin = vid.read()[1] img_h, img_w = frame_origin.shape[0:2] frame_trans = val_aug(frame_origin, cfg.img_size) frame_tensor = torch.tensor(frame_trans).float() if cfg.cuda: frame_tensor = frame_tensor.cuda() with torch.no_grad(), timer.counter('forward'): class_p, box_p, coef_p, proto_p = net(frame_tensor.unsqueeze(0)) with timer.counter('nms'): ids_p, class_p, box_p, coef_p, proto_p = nms(class_p, box_p, coef_p, proto_p, net.anchors, cfg) with timer.counter('after_nms'): ids_p, class_p, boxes_p, masks_p = after_nms(ids_p, class_p, box_p, coef_p, proto_p, img_h, img_w, cfg) with timer.counter('save_img'): frame_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, frame_origin, cfg, fps=t_fps) if cfg.real_time: cv2.imshow('Detection', frame_numpy) cv2.waitKey(1) else: video_writer.write(frame_numpy) aa = time.perf_counter() if i > 0: batch_time = aa - temp timer.add_batch_time(batch_time) temp = aa if i > 0: t_t, t_d, t_f, t_nms, t_an, t_si = timer.get_times(['batch', 'data', 'forward', 'nms', 'after_nms', 'save_img']) fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t bar_str = progress_bar.get_bar(i + 1) print(f'\rDetecting: {bar_str} {i + 1}/{num_frames}, fps: {fps:.2f} | total fps: {t_fps:.2f} | ' f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | ' f't_after_nms: {t_an:.3f} | t_save_img: {t_si:.3f}', end='') if not cfg.real_time: print(f'\n\nFinished, saved in: results/videos/{name}') vid.release() video_writer.release()
def __getitem__(self, index): if self.mode == 'detect': img_name = self.image_path[index] img_origin = cv2.imread(img_name) img_normed = val_aug(img_origin, self.cfg.img_size) return img_normed, img_origin, img_name.split(osp.sep)[-1] else: img_id = self.ids[index] ann_ids = self.coco.getAnnIds(imgIds=img_id) # 'target' includes {'segmentation', 'area', iscrowd', 'image_id', 'bbox', 'category_id'} target = self.coco.loadAnns(ann_ids) target = [aa for aa in target if not aa['iscrowd']] file_name = self.coco.loadImgs(img_id)[0]['file_name'] img_path = osp.join(self.image_path, file_name) assert osp.exists( img_path), f'Image path does not exist: {img_path}' img = cv2.imread(img_path) height, width, _ = img.shape assert len(target) > 0, 'No annotation in this image!' box_list, mask_list, label_list = [], [], [] for aa in target: bbox = aa['bbox'] # When training, some boxes are wrong, ignore them. if self.mode == 'train': if bbox[0] < 0 or bbox[1] < 0 or bbox[2] < 4 or bbox[3] < 4: continue x1y1x2y2_box = np.array( [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]) category = self.continuous_id[aa['category_id']] - 1 box_list.append(x1y1x2y2_box) mask_list.append(self.coco.annToMask(aa)) label_list.append(category) if len(box_list) > 0: boxes = np.array(box_list) masks = np.stack(mask_list, axis=0) labels = np.array(label_list) assert masks.shape == (boxes.shape[0], height, width), 'Unmatched annotations.' if self.mode == 'train': img, masks, boxes, labels = train_aug( img, masks, boxes, labels, self.cfg.img_size) if img is None: return None, None, None else: boxes = np.hstack((boxes, np.expand_dims(labels, axis=1))) return img, boxes, masks elif self.mode == 'val': img = val_aug(img, self.cfg.img_size) boxes = boxes / np.array([width, height, width, height ]) # to 0~1 scale boxes = np.hstack((boxes, np.expand_dims(labels, axis=1))) return img, boxes, masks, height, width else: if self.mode == 'val': raise RuntimeError('Error, no valid object in this image.') else: print( f'No valid object in image: {img_id}. Use a repeated image in this batch.' ) return None, None, None
name = cfg.video.split('/')[-1] video_writer = cv2.VideoWriter(f'results/videos/{name}', cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (frame_width, frame_height)) progress_bar = ProgressBar(40, num_frames) timer.reset() t_fps = 0 for i in range(num_frames): if i == 1: timer.start() frame_origin = vid.read()[1] img_h, img_w = frame_origin.shape[0:2] frame_trans = val_aug(frame_origin, cfg) frame_tensor = torch.tensor(frame_trans).float() if cfg.cuda: frame_tensor = frame_tensor.cuda() with timer.counter('forward'): net_outs = net(frame_tensor.unsqueeze(0)) with timer.counter('nms'): nms_outs = nms(cfg, net_outs) with timer.counter('after_nms'): results = after_nms(nms_outs, img_h, img_w, cfg) with timer.counter('save_img'):