def get_dataset(data): _, label2id = get_vocab() tokenizer = tokenization.FullTokenizer(vocab_file=model_config_bert.bert_vocab_path) def label2index(label, label2id): return label2id[str(label)] def solve(df): x_data = df['review'] input_ids_list = [] input_masks_list = [] segment_ids_list = [] for text in x_data: single_input_id, single_input_mask, single_segment_id = encode_data(text) input_ids_list.append(single_input_id) input_masks_list.append(single_input_mask) segment_ids_list.append(single_segment_id) input_ids = np.asarray(input_ids_list, dtype=np.int32) input_masks = np.asarray(input_masks_list, dtype=np.int32) segment_ids = np.asarray(segment_ids_list, dtype=np.int32) y_tensor = None if 'sentiment' in df.columns.tolist(): y_data = df['sentiment'] y_tensor = np.array([label2index(label, label2id) for label in y_data]) return (input_ids, input_masks, segment_ids), y_tensor def encode_data(text, max_seq_len=config.max_seq_len): input_ids, input_mask, segment_ids = convert_single_example(max_seq_len, tokenizer, text) return input_ids, input_mask, segment_ids return solve(data)
def create_tfrecorf_file(): processor = AiSentimentProcess() label_list = processor.get_labels() # 分词器,不支持中文分词, tokenizer = tokenization.FullTokenizer( vocab_file=settings.bert_model_vocab_path, do_lower_case=True) if not os.path.exists(settings.train_tfrecord_path): train_examples = processor.get_train_examples(settings.train_data_path) file_based_convert_examples_to_features(train_examples, label_list, model_params.max_seq_length, tokenizer, settings.train_tfrecord_path) if not os.path.exists(settings.dev_tfrecord_path): dev_examples = processor.get_dev_examples(settings.dev_data_path) file_based_convert_examples_to_features(dev_examples, label_list, model_params.max_seq_length, tokenizer, settings.dev_tfrecord_path) if not os.path.exists(settings.test_tfrecord_path): test_examples = processor.get_test_examples(settings.test_data_path) file_based_convert_examples_to_features(test_examples, label_list, model_params.max_seq_length, tokenizer, settings.test_tfrecord_path)
def get_bert_param_lists(texts): # token 处理器,主要作用就是 分字,将字转换成ID。vocab_file 字典文件路径 tokenizer = tokenization.FullTokenizer(vocab_file=config.bert_vocab_path) input_ids_list = [] input_masks_list = [] segment_ids_list = [] for text in texts: single_input_id, single_input_mask, single_segment_id = \ convert_single_example_simple(config.max_seq_length, tokenizer, text) input_ids_list.append(single_input_id) input_masks_list.append(single_input_mask) segment_ids_list.append(single_segment_id) input_ids = np.asarray(input_ids_list, dtype=np.int32) input_masks = np.asarray(input_masks_list, dtype=np.int32) segment_ids = np.asarray(segment_ids_list, dtype=np.int32) return input_ids, input_masks, segment_ids
def make_aspect_array(): tokenizer = tokenization.FullTokenizer( vocab_file=settings.bert_model_vocab_path, do_lower_case=True) total_sentence_char_ids = [] for subject in settings.subjects: sub_list = [] for index, i in enumerate(subject.split(" ")): example = InputExample(guid=index, text_a=i, label="0") feature = convert_single_example(index, example, settings.label_list, max_seq_length=10, tokenizer=tokenizer) sub_list.append(feature.input_ids) total_sentence_char_ids.append(sub_list) return np.array(total_sentence_char_ids, dtype=np.int64)
def get_bert_param_lists(texts): """ 将数据转换成Bert能够使用的格式 input_ids:根据BERT-Base-Chinese checkpoint中的vocabtxt中每个字出现的index,将训练文本中的每一个字替换为vocab.txt中的index,需要添加开始CLS和结束SEP input_masks:包含开始CLS和结束SEP有字就填1 segment_ids:seq2seq类任务同时传入两句训练关联训练数据时,有意义,传入一句训练数据则都为0 以上三个list需要用0补齐到max_seq_length的长度 """ # token 处理器,主要作用就是 分字,将字转换成ID。vocab_file 字典文件路径 tokenizer = tokenization.FullTokenizer( vocab_file=bert_model_config.bert_vocab_path) input_ids_list = [] input_masks_list = [] segment_ids_list = [] for text in texts: single_input_id, single_input_mask, single_segment_id = \ convert_single_example_simple(config.max_seq_length, tokenizer, text) input_ids_list.append(single_input_id) input_masks_list.append(single_input_mask) segment_ids_list.append(single_segment_id) input_ids = np.asarray(input_ids_list, dtype=np.int32) input_masks = np.asarray(input_masks_list, dtype=np.int32) segment_ids = np.asarray(segment_ids_list, dtype=np.int32) return input_ids, input_masks, segment_ids
def main(_): tf.logging.set_verbosity(tf.logging.INFO) processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, } if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.gfile.MakeDirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) # new 模型 processor = processors[task_name]() label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None num_train_steps = None num_warmup_steps = None if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if FLAGS.do_eval: eval_examples = processor.get_dev_examples(FLAGS.data_dir) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d", len(eval_examples)) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu: # Eval will be slightly WRONG on the TPU because it will truncate # the last batch. eval_steps = int(len(eval_examples) / FLAGS.eval_batch_size) eval_drop_remainder = True if FLAGS.use_tpu else False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict: predict_examples = processor.get_test_examples(FLAGS.data_dir) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d", len(predict_examples)) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) if FLAGS.use_tpu: # Warning: According to tpu_estimator.py Prediction on TPU is an # experimental feature and hence not supported here raise ValueError("Prediction in TPU not supported") predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: tf.logging.info("***** Predict results *****") for prediction in result: output_line = "\t".join( str(class_probability) for class_probability in prediction) + "\n" writer.write(output_line)
# create by fanfan on 2020/3/17 0017 import tensorflow as tf import third_models.albert_zh.modeling_google as modeling import tensorflow_estimator as tf_estimator import third_models.albert_zh.optimization as optimization from Competition.ai_challenger_2018_sentiment_analysis import settings from tensorflow.contrib.layers import fully_connected, conv1d from utils.bert import tokenization params = settings.ParamsModel() tokenizer = tokenization.FullTokenizer( vocab_file=settings.bert_model_vocab_path, do_lower_case=True) params.char2id = tokenizer.vocab def get_setence_length(data, name): used = tf.sign(tf.abs(data)) length = tf.reduce_sum(used, reduction_indices=-1) length = tf.cast(length, tf.int32, name=name) return length def create_model(albert_config, is_training, input_ids, input_mask, segment_ids, labels, aspechts_char): model = modeling.AlbertModel(config=albert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=False) context_embedding = model.get_sequence_output()