def draw_proposal_recall(img, proposals, proposal_scores, gt_boxes): """ Draw top3 proposals for each gt. Args: proposals: NPx4 proposal_scores: NP gt_boxes: NG """ bbox_iou_float = get_iou_callable() box_ious = bbox_iou_float(gt_boxes, proposals) # ng x np box_ious_argsort = np.argsort(-box_ious, axis=1) good_proposals_ind = box_ious_argsort[:, :3] # for each gt, find 3 best proposals good_proposals_ind = np.unique(good_proposals_ind.ravel()) proposals = proposals[good_proposals_ind, :] tags = list(map(str, proposal_scores[good_proposals_ind])) img = viz.draw_boxes(img, proposals, tags) return img, good_proposals_ind
def get_anchor_labels(anchors, gt_boxes, crowd_boxes): """ Label each anchor as fg/bg/ignore. Args: anchors: Ax4 float gt_boxes: Bx4 float crowd_boxes: Cx4 float Returns: anchor_labels: (A,) int. Each element is {-1, 0, 1} anchor_boxes: Ax4. Contains the target gt_box for each anchor when the anchor is fg. """ # This function will modify labels and return the filtered inds def filter_box_label(labels, value, max_num): curr_inds = np.where(labels == value)[0] if len(curr_inds) > max_num: disable_inds = np.random.choice( curr_inds, size=(len(curr_inds) - max_num), replace=False) labels[disable_inds] = -1 # ignore them curr_inds = np.where(labels == value)[0] return curr_inds bbox_iou_float = get_iou_callable() NA, NB = len(anchors), len(gt_boxes) assert NB > 0 # empty images should have been filtered already box_ious = bbox_iou_float(anchors, gt_boxes) # NA x NB ious_argmax_per_anchor = box_ious.argmax(axis=1) # NA, ious_max_per_anchor = box_ious.max(axis=1) ious_max_per_gt = np.amax(box_ious, axis=0, keepdims=True) # 1xNB # for each gt, find all those anchors (including ties) that has the max ious with it anchors_with_max_iou_per_gt = np.where(box_ious == ious_max_per_gt)[0] # Setting NA labels: 1--fg 0--bg -1--ignore anchor_labels = -np.ones((NA,), dtype='int32') # NA, # the order of setting neg/pos labels matter anchor_labels[anchors_with_max_iou_per_gt] = 1 anchor_labels[ious_max_per_anchor >= config.POSITIVE_ANCHOR_THRES] = 1 anchor_labels[ious_max_per_anchor < config.NEGATIVE_ANCHOR_THRES] = 0 # First label all non-ignore candidate boxes which overlap crowd as ignore if crowd_boxes.size > 0: cand_inds = np.where(anchor_labels >= 0)[0] cand_anchors = anchors[cand_inds] ious = bbox_iou_float(cand_anchors, crowd_boxes) overlap_with_crowd = cand_inds[ious.max(axis=1) > config.CROWD_OVERLAP_THRES] anchor_labels[overlap_with_crowd] = -1 # Filter fg labels: ignore some fg if fg is too many old_num_fg = np.sum(anchor_labels == 1) target_num_fg = int(config.RPN_BATCH_PER_IM * config.RPN_FG_RATIO) fg_inds = filter_box_label(anchor_labels, 1, target_num_fg) # Note that fg could be fewer than the target ratio # filter bg labels. num_bg is not allowed to be too many old_num_bg = np.sum(anchor_labels == 0) if old_num_bg == 0 or len(fg_inds) == 0: # No valid bg/fg in this image, skip. # This can happen if, e.g. the image has large crowd. raise MalformedData("No valid foreground/background for RPN!") target_num_bg = config.RPN_BATCH_PER_IM - len(fg_inds) bg_inds = filter_box_label(anchor_labels, 0, target_num_bg) # Set anchor boxes: the best gt_box for each fg anchor anchor_boxes = np.zeros((NA, 4), dtype='float32') fg_boxes = gt_boxes[ious_argmax_per_anchor[fg_inds], :] anchor_boxes[fg_inds, :] = fg_boxes return anchor_labels, anchor_boxes