dims_dg = [[256, 1024], [256, 1024]] lr = [lr_pre, lr_ae, lr_dg, lr_h] epochs = [epochs_pre, epochs_total, epochs_h] for j in range(num): data = Dataset('coil_2views') x1, x2, gt = data.load_data() x1 = data.normalize(x1, 0) x2 = data.normalize(x2, 0) X[str(0)], X[str(1)] = x1, x2 n_clusters = len(set(gt)) H, gt = model_multi_view(X, gt, para_lambda, dims_ae, dims_dg, act, lr, epochs, batch_size) acc_H_all[j], acc_H_std, nmi_H_all[j], nmi_H_std, RI_H_all[j], RI_std, f1_H_all[j], f1_std = \ cluster(n_clusters, H, gt, count=1) print('clustering h : acc = {:.4f}, nmi = {:.4f}'.format( acc_H_all[j], nmi_H_all[j])) acc_mean = np.mean(acc_H_all) nmi_mean = np.mean(nmi_H_all) acc_std = np.std(acc_H_all) nmi_std = np.std(nmi_H_all) RI_mean = np.mean(RI_H_all) RI_std = np.std(RI_H_all) fs_mean = np.mean(f1_H_all) fs_std = np.std(f1_H_all) arg = [
def print_result(n_clusters, H, gt, count=10): acc_avg,nmi_avg,ari_avg,f1_avg = cluster(n_clusters, H, gt, count=count) print('clustering h : acc = {:.4f}, nmi = {:.4f},ari = {:.4f}, f1 = {:.4f}'.format(acc_avg, nmi_avg,ari_avg, f1_avg))
act = [act_ae1, act_ae2, act_dg1, act_dg2] dims = [dims_ae1, dims_ae2, dims_dg1, dims_dg2] lr = [lr_pre, lr_ae, lr_dg, lr_h] epochs = [epochs_pre, epochs_total, epochs_h] for j in range(num): data = Dataset('ORL_2views') x1, x2, gt = data.load_data() x1 = data.normalize(x1, 0) x2 = data.normalize(x2, 0) n_clusters = len(set(gt)) H, gt = model(x1, x2, gt, para_lambda, dims, act, lr, epochs, batch_size) acc_H_all[j], acc_H_std, nmi_H_all[j], nmi_H_std, RI_H_all[j], RI_std, f1_H_all[j], f1_std = cluster(n_clusters, H, gt, count=1) print('clustering h : acc = {:.4f}, nmi = {:.4f}'.format(acc_H_all[j], nmi_H_all[j])) acc_mean = np.mean(acc_H_all) nmi_mean = np.mean(nmi_H_all) acc_std = np.std(acc_H_all) nmi_std = np.std(nmi_H_all) RI_mean = np.mean(RI_H_all) RI_std = np.std(RI_H_all) fs_mean = np.mean(f1_H_all) fs_std = np.std(f1_H_all) arg = ['lambda', para_lambda, 'batch_size', batch_size, 'lr_pre', lr_pre, 'lr_ae', lr_ae,
dims = [dims_ae1, dims_ae2, dims_dg1, dims_dg2] lr = [lr_pre, lr_ae, lr_dg, lr_h] epochs = [epochs_pre, epochs_total, epochs_h] for j in range(num): data = Dataset('handwritten_2views') x1, x2, gt = data.load_data() x1 = data.normalize(x1, 0) x2 = data.normalize(x2, 0) n_clusters = len(set(gt)) H, gt = model(x1, x2, gt, para_lambda, dims, act, lr, epochs, batch_size) acc_H_all[j], acc_H_std, nmi_H_all[j], nmi_H_std, RI_H_all[ j], RI_std, f1_H_all[j], f1_std = cluster(n_clusters, H, gt, count=1) print('clustering h : acc = {:.4f}, nmi = {:.4f}'.format( acc_H_all[j], nmi_H_all[j])) acc_mean = np.mean(acc_H_all) nmi_mean = np.mean(nmi_H_all) acc_std = np.std(acc_H_all) nmi_std = np.std(nmi_H_all) RI_mean = np.mean(RI_H_all) RI_std = np.std(RI_H_all) fs_mean = np.mean(f1_H_all) fs_std = np.std(f1_H_all)