Example #1
0
def run_one_epoch(epoch,
                  loader,
                  model,
                  criterion,
                  optimizer,
                  lr_scheduler,
                  ema,
                  meters,
                  max_iter=None,
                  phase='train'):
    """Run one epoch."""
    assert phase in ['train', 'val', 'test', 'bn_calibration'
                     ], "phase not be in train/val/test/bn_calibration."
    train = phase == 'train'
    if train:
        model.train()
    else:
        model.eval()
    if phase == 'bn_calibration':
        model.apply(bn_calibration)

    if FLAGS.use_distributed:
        loader.sampler.set_epoch(epoch)

    results = None
    data_iterator = iter(loader)
    if FLAGS.use_distributed:
        data_fetcher = dataflow.DataPrefetcher(data_iterator)
    else:
        # TODO(meijieru): prefetch for non distributed
        logging.warning('Not use prefetcher')
        data_fetcher = data_iterator
    for batch_idx, (input, target) in enumerate(data_fetcher):
        # used for bn calibration
        if max_iter is not None:
            assert phase == 'bn_calibration'
            if batch_idx >= max_iter:
                break

        target = target.cuda(non_blocking=True)
        if train:
            optimizer.zero_grad()
            loss = mc.forward_loss(model, criterion, input, target, meters)
            loss_l2 = optim.cal_l2_loss(model, FLAGS.weight_decay,
                                        FLAGS.weight_decay_method)
            loss = loss + loss_l2
            loss.backward()
            if FLAGS.use_distributed:
                udist.allreduce_grads(model)

            if FLAGS._global_step % FLAGS.log_interval == 0:
                results = mc.reduce_and_flush_meters(meters)
                if udist.is_master():
                    logging.info('Epoch {}/{} Iter {}/{} {}: '.format(
                        epoch, FLAGS.num_epochs, batch_idx, len(loader), phase)
                                 + ', '.join('{}: {:.4f}'.format(k, v)
                                             for k, v in results.items()))
                    for k, v in results.items():
                        mc.summary_writer.add_scalar('{}/{}'.format(phase, k),
                                                     v, FLAGS._global_step)
            if udist.is_master(
            ) and FLAGS._global_step % FLAGS.log_interval == 0:
                mc.summary_writer.add_scalar('train/learning_rate',
                                             optimizer.param_groups[0]['lr'],
                                             FLAGS._global_step)
                mc.summary_writer.add_scalar('train/l2_regularize_loss',
                                             extract_item(loss_l2),
                                             FLAGS._global_step)
                mc.summary_writer.add_scalar(
                    'train/current_epoch',
                    FLAGS._global_step / FLAGS._steps_per_epoch,
                    FLAGS._global_step)
                if FLAGS.data_loader_workers > 0:
                    mc.summary_writer.add_scalar(
                        'data/train/prefetch_size',
                        get_data_queue_size(data_iterator), FLAGS._global_step)

            optimizer.step()
            lr_scheduler.step()
            if FLAGS.use_distributed and FLAGS.allreduce_bn:
                udist.allreduce_bn(model)
            FLAGS._global_step += 1

            # NOTE: after steps count upate
            if ema is not None:
                model_unwrap = mc.unwrap_model(model)
                ema_names = ema.average_names()
                params = get_params_by_name(model_unwrap, ema_names)
                for name, param in zip(ema_names, params):
                    ema(name, param, FLAGS._global_step)
        else:
            mc.forward_loss(model, criterion, input, target, meters)

    if not train:
        results = mc.reduce_and_flush_meters(meters)
        if udist.is_master():
            logging.info(
                'Epoch {}/{} {}: '.format(epoch, FLAGS.num_epochs, phase) +
                ', '.join('{}: {:.4f}'.format(k, v)
                          for k, v in results.items()))
            for k, v in results.items():
                mc.summary_writer.add_scalar('{}/{}'.format(phase, k), v,
                                             FLAGS._global_step)
    return results
Example #2
0
def train_val_test():
    """Train and val."""
    torch.backends.cudnn.benchmark = True

    # model
    model, model_wrapper = mc.get_model()
    ema = mc.setup_ema(model)
    criterion = torch.nn.CrossEntropyLoss(reduction='none').cuda()
    criterion_smooth = optim.CrossEntropyLabelSmooth(
        FLAGS.model_kwparams['num_classes'],
        FLAGS['label_smoothing'],
        reduction='none').cuda()
    # TODO(meijieru): cal loss on all GPUs instead only `cuda:0` when non
    # distributed

    if FLAGS.get('log_graph_only', False):
        if udist.is_master():
            _input = torch.zeros(1, 3, FLAGS.image_size,
                                 FLAGS.image_size).cuda()
            _input = _input.requires_grad_(True)
            mc.summary_writer.add_graph(model_wrapper, (_input, ),
                                        verbose=True)
        return

    # check pretrained
    if FLAGS.pretrained:
        checkpoint = torch.load(FLAGS.pretrained,
                                map_location=lambda storage, loc: storage)
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        # update keys from external models
        if isinstance(checkpoint, dict) and 'model' in checkpoint:
            checkpoint = checkpoint['model']
        if (hasattr(FLAGS, 'pretrained_model_remap_keys')
                and FLAGS.pretrained_model_remap_keys):
            new_checkpoint = {}
            new_keys = list(model_wrapper.state_dict().keys())
            old_keys = list(checkpoint.keys())
            for key_new, key_old in zip(new_keys, old_keys):
                new_checkpoint[key_new] = checkpoint[key_old]
                logging.info('remap {} to {}'.format(key_new, key_old))
            checkpoint = new_checkpoint
        model_wrapper.load_state_dict(checkpoint)
        logging.info('Loaded model {}.'.format(FLAGS.pretrained))
    optimizer = optim.get_optimizer(model_wrapper, FLAGS)

    # check resume training
    if FLAGS.resume:
        checkpoint = torch.load(os.path.join(FLAGS.resume,
                                             'latest_checkpoint.pt'),
                                map_location=lambda storage, loc: storage)
        model_wrapper.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        last_epoch = checkpoint['last_epoch']
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        lr_scheduler.last_epoch = (last_epoch + 1) * FLAGS._steps_per_epoch
        best_val = extract_item(checkpoint['best_val'])
        train_meters, val_meters = checkpoint['meters']
        FLAGS._global_step = (last_epoch + 1) * FLAGS._steps_per_epoch
        if udist.is_master():
            logging.info('Loaded checkpoint {} at epoch {}.'.format(
                FLAGS.resume, last_epoch))
    else:
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        # last_epoch = lr_scheduler.last_epoch
        last_epoch = -1
        best_val = 1.
        train_meters = mc.get_meters('train')
        val_meters = mc.get_meters('val')
        FLAGS._global_step = 0

    if not FLAGS.resume and udist.is_master():
        logging.info(model_wrapper)
    if FLAGS.profiling:
        if 'gpu' in FLAGS.profiling:
            mc.profiling(model, use_cuda=True)
        if 'cpu' in FLAGS.profiling:
            mc.profiling(model, use_cuda=False)

    # data
    (train_transforms, val_transforms,
     test_transforms) = dataflow.data_transforms(FLAGS)
    (train_set, val_set, test_set) = dataflow.dataset(train_transforms,
                                                      val_transforms,
                                                      test_transforms, FLAGS)
    (train_loader, calib_loader, val_loader,
     test_loader) = dataflow.data_loader(train_set, val_set, test_set, FLAGS)

    if FLAGS.test_only and (test_loader is not None):
        if udist.is_master():
            logging.info('Start testing.')
        test_meters = mc.get_meters('test')
        validate(last_epoch, calib_loader, test_loader, criterion, test_meters,
                 model_wrapper, ema, 'test')
        return

    # already broadcast by AllReduceDistributedDataParallel
    # optimizer load same checkpoint/same initialization

    if udist.is_master():
        logging.info('Start training.')

    for epoch in range(last_epoch + 1, FLAGS.num_epochs):
        # train
        results = run_one_epoch(epoch,
                                train_loader,
                                model_wrapper,
                                criterion_smooth,
                                optimizer,
                                lr_scheduler,
                                ema,
                                train_meters,
                                phase='train')

        # val
        results = validate(epoch, calib_loader, val_loader, criterion,
                           val_meters, model_wrapper, ema, 'val')
        if results['top1_error'] < best_val:
            best_val = results['top1_error']

            if udist.is_master():
                save_status(model_wrapper, optimizer, ema, epoch, best_val,
                            (train_meters, val_meters),
                            os.path.join(FLAGS.log_dir, 'best_model.pt'))
                logging.info(
                    'New best validation top1 error: {:.4f}'.format(best_val))
        if udist.is_master():
            # save latest checkpoint
            save_status(model_wrapper, optimizer, ema, epoch, best_val,
                        (train_meters, val_meters),
                        os.path.join(FLAGS.log_dir, 'latest_checkpoint.pt'))

        wandb.log(
            {
                "Validation Accuracy": 1. - results['top1_error'],
                "Best Validation Accuracy": 1. - best_val
            },
            step=epoch)


# NOTE(meijieru): from scheduler code, should be called after train/val
# use stepwise scheduler instead
# lr_scheduler.step()
    return
Example #3
0
def run_one_epoch(epoch,
                  loader,
                  model,
                  criterion,
                  optimizer,
                  lr_scheduler,
                  ema,
                  rho_scheduler,
                  meters,
                  max_iter=None,
                  phase='train'):
    """Run one epoch."""
    assert phase in [
        'train', 'val', 'test', 'bn_calibration'
    ] or phase.startswith(
        'prune'), "phase not be in train/val/test/bn_calibration/prune."
    train = phase == 'train'
    if train:
        model.train()
    else:
        model.eval()
    if phase == 'bn_calibration':
        model.apply(bn_calibration)

    if not FLAGS.use_hdfs:
        if FLAGS.use_distributed:
            loader.sampler.set_epoch(epoch)

    results = None
    data_iterator = iter(loader)
    if not FLAGS.use_hdfs:
        if FLAGS.use_distributed:
            if FLAGS.dataset == 'coco':
                data_fetcher = dataflow.DataPrefetcherKeypoint(data_iterator)
            else:
                data_fetcher = dataflow.DataPrefetcher(data_iterator)
        else:
            logging.warning('Not use prefetcher')
            data_fetcher = data_iterator

    for batch_idx, data in enumerate(data_fetcher):
        if FLAGS.dataset == 'coco':
            input, target, target_weight, meta = data
            # print(input.shape, target.shape, target_weight.shape, meta)
            # (4, 3, 384, 288), (4, 17, 96, 72), (4, 17, 1),
        else:
            input, target = data
        # if batch_idx > 400:
        #     break
        # used for bn calibration
        if max_iter is not None:
            assert phase == 'bn_calibration'
            if batch_idx >= max_iter:
                break

        target = target.cuda(non_blocking=True)
        if train:
            optimizer.zero_grad()
            rho = rho_scheduler(FLAGS._global_step)

            if FLAGS.dataset == 'coco':
                outputs = model(input)
                if isinstance(outputs, list):
                    loss = criterion(outputs[0], target, target_weight)
                    for output in outputs[1:]:
                        loss += criterion(output, target, target_weight)
                else:
                    output = outputs
                    loss = criterion(output, target, target_weight)
                _, avg_acc, cnt, pred = accuracy_keypoint(
                    output.detach().cpu().numpy(),
                    target.detach().cpu().numpy())  # cnt=17
                meters['acc'].cache(avg_acc)
                meters['loss'].cache(loss)
            else:
                loss = mc.forward_loss(model,
                                       criterion,
                                       input,
                                       target,
                                       meters,
                                       task=FLAGS.model_kwparams.task,
                                       distill=FLAGS.distill)
            if FLAGS.prune_params['method'] is not None:
                loss_l2 = optim.cal_l2_loss(
                    model, FLAGS.weight_decay,
                    FLAGS.weight_decay_method)  # manual weight decay
                loss_bn_l1 = prune.cal_bn_l1_loss(get_prune_weights(model),
                                                  FLAGS._bn_to_prune.penalty,
                                                  rho)
                if FLAGS.prune_params.use_transformer:

                    transformer_weights = get_prune_weights(model, True)
                    loss_bn_l1 += prune.cal_bn_l1_loss(
                        transformer_weights,
                        FLAGS._bn_to_prune_transformer.penalty, rho)

                    transformer_dict = []
                    for name, weight in zip(
                            FLAGS._bn_to_prune_transformer.weight,
                            transformer_weights):
                        transformer_dict.append(
                            sum(weight > FLAGS.model_shrink_threshold).item())
                    FLAGS._bn_to_prune_transformer.add_info_list(
                        'channels', transformer_dict)
                    FLAGS._bn_to_prune_transformer.update_penalty()
                    if udist.is_master(
                    ) and FLAGS._global_step % FLAGS.log_interval == 0:
                        logging.info(transformer_dict)
                        # logging.info(FLAGS._bn_to_prune_transformer.penalty)

                meters['loss_l2'].cache(loss_l2)
                meters['loss_bn_l1'].cache(loss_bn_l1)
                loss = loss + loss_l2 + loss_bn_l1
            loss.backward()
            if FLAGS.use_distributed:
                udist.allreduce_grads(model)

            if FLAGS._global_step % FLAGS.log_interval == 0:
                results = mc.reduce_and_flush_meters(meters)
                if udist.is_master():
                    logging.info('Epoch {}/{} Iter {}/{} Lr: {} {}: '.format(
                        epoch, FLAGS.num_epochs, batch_idx, len(loader),
                        optimizer.param_groups[0]["lr"], phase) +
                                 ', '.join('{}: {:.4f}'.format(k, v)
                                           for k, v in results.items()))
                    for k, v in results.items():
                        mc.summary_writer.add_scalar('{}/{}'.format(phase, k),
                                                     v, FLAGS._global_step)

            if udist.is_master(
            ) and FLAGS._global_step % FLAGS.log_interval == 0:
                mc.summary_writer.add_scalar('train/learning_rate',
                                             optimizer.param_groups[0]['lr'],
                                             FLAGS._global_step)
                if FLAGS.prune_params['method'] is not None:
                    mc.summary_writer.add_scalar('train/l2_regularize_loss',
                                                 extract_item(loss_l2),
                                                 FLAGS._global_step)
                    mc.summary_writer.add_scalar('train/bn_l1_loss',
                                                 extract_item(loss_bn_l1),
                                                 FLAGS._global_step)
                mc.summary_writer.add_scalar('prune/rho', rho,
                                             FLAGS._global_step)
                mc.summary_writer.add_scalar(
                    'train/current_epoch',
                    FLAGS._global_step / FLAGS._steps_per_epoch,
                    FLAGS._global_step)
                if FLAGS.data_loader_workers > 0:
                    mc.summary_writer.add_scalar(
                        'data/train/prefetch_size',
                        get_data_queue_size(data_iterator), FLAGS._global_step)

            if udist.is_master(
            ) and FLAGS._global_step % FLAGS.log_interval_detail == 0:
                summary_bn(model, 'train')

            optimizer.step()
            if FLAGS.lr_scheduler == 'poly':
                optim.poly_learning_rate(
                    optimizer, FLAGS.lr,
                    epoch * FLAGS._steps_per_epoch + batch_idx + 1,
                    FLAGS.num_epochs * FLAGS._steps_per_epoch)
            else:
                lr_scheduler.step()
            if FLAGS.use_distributed and FLAGS.allreduce_bn:
                udist.allreduce_bn(model)
            FLAGS._global_step += 1

            # NOTE: after steps count update
            if ema is not None:
                model_unwrap = mc.unwrap_model(model)
                ema_names = ema.average_names()
                params = get_params_by_name(model_unwrap, ema_names)
                for name, param in zip(ema_names, params):
                    ema(name, param, FLAGS._global_step)
        else:
            if FLAGS.dataset == 'coco':
                outputs = model(input)
                if isinstance(outputs, list):
                    loss = criterion(outputs[0], target, target_weight)
                    for output in outputs[1:]:
                        loss += criterion(output, target, target_weight)
                else:
                    output = outputs
                    loss = criterion(output, target, target_weight)
                _, avg_acc, cnt, pred = accuracy_keypoint(
                    output.detach().cpu().numpy(),
                    target.detach().cpu().numpy())  # cnt=17
                meters['acc'].cache(avg_acc)
                meters['loss'].cache(loss)
            else:
                mc.forward_loss(model,
                                criterion,
                                input,
                                target,
                                meters,
                                task=FLAGS.model_kwparams.task,
                                distill=False)

    if not train:
        results = mc.reduce_and_flush_meters(meters)
        if udist.is_master():
            logging.info(
                'Epoch {}/{} {}: '.format(epoch, FLAGS.num_epochs, phase) +
                ', '.join('{}: {:.4f}'.format(k, v)
                          for k, v in results.items()))
            for k, v in results.items():
                mc.summary_writer.add_scalar('{}/{}'.format(phase, k), v,
                                             FLAGS._global_step)
    return results
Example #4
0
def train_val_test():
    """Train and val."""
    torch.backends.cudnn.benchmark = True  # For acceleration

    # model
    model, model_wrapper = mc.get_model()
    ema = mc.setup_ema(model)
    criterion = torch.nn.CrossEntropyLoss(reduction='mean').cuda()
    criterion_smooth = optim.CrossEntropyLabelSmooth(
        FLAGS.model_kwparams['num_classes'],
        FLAGS['label_smoothing'],
        reduction='mean').cuda()
    if model.task == 'segmentation':
        criterion = CrossEntropyLoss().cuda()
        criterion_smooth = CrossEntropyLoss().cuda()
    if FLAGS.dataset == 'coco':
        criterion = JointsMSELoss(use_target_weight=True).cuda()
        criterion_smooth = JointsMSELoss(use_target_weight=True).cuda()

    if FLAGS.get('log_graph_only', False):
        if udist.is_master():
            _input = torch.zeros(1, 3, FLAGS.image_size,
                                 FLAGS.image_size).cuda()
            _input = _input.requires_grad_(True)
            if isinstance(model_wrapper,
                          (torch.nn.DataParallel,
                           udist.AllReduceDistributedDataParallel)):
                mc.summary_writer.add_graph(model_wrapper.module, (_input, ),
                                            verbose=True)
            else:
                mc.summary_writer.add_graph(model_wrapper, (_input, ),
                                            verbose=True)
        return

    # check pretrained
    if FLAGS.pretrained:
        checkpoint = torch.load(FLAGS.pretrained,
                                map_location=lambda storage, loc: storage)
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        # update keys from external models
        if isinstance(checkpoint, dict) and 'model' in checkpoint:
            checkpoint = checkpoint['model']
        if (hasattr(FLAGS, 'pretrained_model_remap_keys')
                and FLAGS.pretrained_model_remap_keys):
            new_checkpoint = {}
            new_keys = list(model_wrapper.state_dict().keys())
            old_keys = list(checkpoint.keys())
            for key_new, key_old in zip(new_keys, old_keys):
                new_checkpoint[key_new] = checkpoint[key_old]
                if udist.is_master():
                    logging.info('remap {} to {}'.format(key_new, key_old))
            checkpoint = new_checkpoint
        model_wrapper.load_state_dict(checkpoint)
        if udist.is_master():
            logging.info('Loaded model {}.'.format(FLAGS.pretrained))
    optimizer = optim.get_optimizer(model_wrapper, FLAGS)

    # check resume training
    if FLAGS.resume:
        checkpoint = torch.load(os.path.join(FLAGS.resume,
                                             'latest_checkpoint.pt'),
                                map_location=lambda storage, loc: storage)
        model_wrapper = checkpoint['model'].cuda()
        model = model_wrapper.module
        # model = checkpoint['model'].module
        optimizer = checkpoint['optimizer']
        for state in optimizer.state.values():
            for k, v in state.items():
                if isinstance(v, torch.Tensor):
                    state[k] = v.cuda()
        # model_wrapper.load_state_dict(checkpoint['model'])
        # optimizer.load_state_dict(checkpoint['optimizer'])
        if ema:
            # ema.load_state_dict(checkpoint['ema'])
            ema = checkpoint['ema'].cuda()
            ema.to(get_device(model))
        last_epoch = checkpoint['last_epoch']
        lr_scheduler = optim.get_lr_scheduler(optimizer,
                                              FLAGS,
                                              last_epoch=(last_epoch + 1) *
                                              FLAGS._steps_per_epoch)
        lr_scheduler.last_epoch = (last_epoch + 1) * FLAGS._steps_per_epoch
        best_val = extract_item(checkpoint['best_val'])
        train_meters, val_meters = checkpoint['meters']
        FLAGS._global_step = (last_epoch + 1) * FLAGS._steps_per_epoch
        if udist.is_master():
            logging.info('Loaded checkpoint {} at epoch {}.'.format(
                FLAGS.resume, last_epoch))
    else:
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        # last_epoch = lr_scheduler.last_epoch
        last_epoch = -1
        best_val = 1.
        if not FLAGS.distill:
            train_meters = mc.get_meters('train', FLAGS.prune_params['method'])
            val_meters = mc.get_meters('val')
        else:
            train_meters = mc.get_distill_meters('train',
                                                 FLAGS.prune_params['method'])
            val_meters = mc.get_distill_meters('val')
        if FLAGS.model_kwparams.task == 'segmentation':
            best_val = 0.
            if not FLAGS.distill:
                train_meters = mc.get_seg_meters('train',
                                                 FLAGS.prune_params['method'])
                val_meters = mc.get_seg_meters('val')
            else:
                train_meters = mc.get_seg_distill_meters(
                    'train', FLAGS.prune_params['method'])
                val_meters = mc.get_seg_distill_meters('val')
        FLAGS._global_step = 0

    if not FLAGS.resume and udist.is_master():
        logging.info(model_wrapper)
    assert FLAGS.profiling, '`m.macs` is used for calculating penalty'
    # if udist.is_master():
    #     model.apply(lambda m: print(m))
    if FLAGS.profiling:
        if 'gpu' in FLAGS.profiling:
            mc.profiling(model, use_cuda=True)
        if 'cpu' in FLAGS.profiling:
            mc.profiling(model, use_cuda=False)

    if FLAGS.dataset == 'cityscapes':
        (train_set, val_set,
         test_set) = seg_dataflow.cityscapes_datasets(FLAGS)
        segval = SegVal(num_classes=19)
    elif FLAGS.dataset == 'ade20k':
        (train_set, val_set, test_set) = seg_dataflow.ade20k_datasets(FLAGS)
        segval = SegVal(num_classes=150)
    elif FLAGS.dataset == 'coco':
        (train_set, val_set, test_set) = seg_dataflow.coco_datasets(FLAGS)
        # print(len(train_set), len(val_set))  # 149813 104125
        segval = None
    else:
        # data
        (train_transforms, val_transforms,
         test_transforms) = dataflow.data_transforms(FLAGS)
        (train_set, val_set,
         test_set) = dataflow.dataset(train_transforms, val_transforms,
                                      test_transforms, FLAGS)
        segval = None
    (train_loader, calib_loader, val_loader,
     test_loader) = dataflow.data_loader(train_set, val_set, test_set, FLAGS)

    # get bn's weights
    if FLAGS.prune_params.use_transformer:
        FLAGS._bn_to_prune, FLAGS._bn_to_prune_transformer = prune.get_bn_to_prune(
            model, FLAGS.prune_params)
    else:
        FLAGS._bn_to_prune = prune.get_bn_to_prune(model, FLAGS.prune_params)
    rho_scheduler = prune.get_rho_scheduler(FLAGS.prune_params,
                                            FLAGS._steps_per_epoch)

    if FLAGS.test_only and (test_loader is not None):
        if udist.is_master():
            logging.info('Start testing.')
        test_meters = mc.get_meters('test')
        validate(last_epoch, calib_loader, test_loader, criterion, test_meters,
                 model_wrapper, ema, 'test')
        return

    # already broadcast by AllReduceDistributedDataParallel
    # optimizer load same checkpoint/same initialization

    if udist.is_master():
        logging.info('Start training.')

    for epoch in range(last_epoch + 1, FLAGS.num_epochs):
        # train
        results = run_one_epoch(epoch,
                                train_loader,
                                model_wrapper,
                                criterion_smooth,
                                optimizer,
                                lr_scheduler,
                                ema,
                                rho_scheduler,
                                train_meters,
                                phase='train')

        if (epoch + 1) % FLAGS.eval_interval == 0:
            # val
            results, model_eval_wrapper = validate(epoch, calib_loader,
                                                   val_loader, criterion,
                                                   val_meters, model_wrapper,
                                                   ema, 'val', segval, val_set)

            if FLAGS.prune_params['method'] is not None and FLAGS.prune_params[
                    'bn_prune_filter'] is not None:
                prune_threshold = FLAGS.model_shrink_threshold  # 1e-3
                masks = prune.cal_mask_network_slimming_by_threshold(
                    get_prune_weights(model_eval_wrapper), prune_threshold
                )  # get mask for all bn weights (depth-wise)
                FLAGS._bn_to_prune.add_info_list('mask', masks)
                flops_pruned, infos = prune.cal_pruned_flops(
                    FLAGS._bn_to_prune)
                log_pruned_info(mc.unwrap_model(model_eval_wrapper),
                                flops_pruned, infos, prune_threshold)
                if not FLAGS.distill:
                    if flops_pruned >= FLAGS.model_shrink_delta_flops \
                            or epoch == FLAGS.num_epochs - 1:
                        ema_only = (epoch == FLAGS.num_epochs - 1)
                        shrink_model(model_wrapper, ema, optimizer,
                                     FLAGS._bn_to_prune, prune_threshold,
                                     ema_only)
            model_kwparams = mb.output_network(mc.unwrap_model(model_wrapper))

            if udist.is_master():
                if FLAGS.model_kwparams.task == 'classification' and results[
                        'top1_error'] < best_val:
                    best_val = results['top1_error']
                    logging.info(
                        'New best validation top1 error: {:.4f}'.format(
                            best_val))

                    save_status(model_wrapper, model_kwparams, optimizer, ema,
                                epoch, best_val, (train_meters, val_meters),
                                os.path.join(FLAGS.log_dir, 'best_model'))

                elif FLAGS.model_kwparams.task == 'segmentation' and FLAGS.dataset != 'coco' and results[
                        'mIoU'] > best_val:
                    best_val = results['mIoU']
                    logging.info('New seg mIoU: {:.4f}'.format(best_val))

                    save_status(model_wrapper, model_kwparams, optimizer, ema,
                                epoch, best_val, (train_meters, val_meters),
                                os.path.join(FLAGS.log_dir, 'best_model'))
                elif FLAGS.dataset == 'coco' and results > best_val:
                    best_val = results
                    logging.info('New Result: {:.4f}'.format(best_val))
                    save_status(model_wrapper, model_kwparams, optimizer, ema,
                                epoch, best_val, (train_meters, val_meters),
                                os.path.join(FLAGS.log_dir, 'best_model'))

                # save latest checkpoint
                save_status(model_wrapper, model_kwparams, optimizer, ema,
                            epoch, best_val, (train_meters, val_meters),
                            os.path.join(FLAGS.log_dir, 'latest_checkpoint'))

    return
Example #5
0
def train_val_test():
    """Train and val."""
    torch.backends.cudnn.benchmark = True

    # model
    model, model_wrapper = get_model()
    criterion = torch.nn.CrossEntropyLoss(reduction='none').cuda()
    criterion_smooth = optim.CrossEntropyLabelSmooth(
        FLAGS.model_kwparams['num_classes'],
        FLAGS['label_smoothing'],
        reduction='none').cuda()
    # TODO: cal loss on all GPUs instead only `cuda:0` when non
    # distributed

    ema = None
    if FLAGS.moving_average_decay > 0.0:
        if FLAGS.moving_average_decay_adjust:
            moving_average_decay = optim.ExponentialMovingAverage.adjust_momentum(
                FLAGS.moving_average_decay,
                FLAGS.moving_average_decay_base_batch / FLAGS.batch_size)
        else:
            moving_average_decay = FLAGS.moving_average_decay
        logging.info('Moving average for model parameters: {}'.format(
            moving_average_decay))
        ema = optim.ExponentialMovingAverage(moving_average_decay)
        for name, param in model.named_parameters():
            ema.register(name, param)
        # We maintain mva for batch norm moving mean and variance as well.
        for name, buffer in model.named_buffers():
            if 'running_var' in name or 'running_mean' in name:
                ema.register(name, buffer)

    if FLAGS.get('log_graph_only', False):
        if is_root_rank:
            _input = torch.zeros(1, 3, FLAGS.image_size,
                                 FLAGS.image_size).cuda()
            _input = _input.requires_grad_(True)
            summary_writer.add_graph(model_wrapper, (_input, ), verbose=True)
        return

    # check pretrained
    if FLAGS.pretrained:
        checkpoint = torch.load(FLAGS.pretrained,
                                map_location=lambda storage, loc: storage)
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        # update keys from external models
        if isinstance(checkpoint, dict) and 'model' in checkpoint:
            checkpoint = checkpoint['model']
        if (hasattr(FLAGS, 'pretrained_model_remap_keys')
                and FLAGS.pretrained_model_remap_keys):
            new_checkpoint = {}
            new_keys = list(model_wrapper.state_dict().keys())
            old_keys = list(checkpoint.keys())
            for key_new, key_old in zip(new_keys, old_keys):
                new_checkpoint[key_new] = checkpoint[key_old]
                logging.info('remap {} to {}'.format(key_new, key_old))
            checkpoint = new_checkpoint
        model_wrapper.load_state_dict(checkpoint)
        logging.info('Loaded model {}.'.format(FLAGS.pretrained))
    optimizer = optim.get_optimizer(model_wrapper, FLAGS)

    # check resume training
    if FLAGS.resume:
        checkpoint = torch.load(os.path.join(FLAGS.resume,
                                             'latest_checkpoint.pt'),
                                map_location=lambda storage, loc: storage)
        model_wrapper.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        if ema:
            ema.load_state_dict(checkpoint['ema'])
            ema.to(get_device(model))
        last_epoch = checkpoint['last_epoch']
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        lr_scheduler.last_epoch = (last_epoch + 1) * FLAGS._steps_per_epoch
        best_val = extract_item(checkpoint['best_val'])
        train_meters, val_meters = checkpoint['meters']
        FLAGS._global_step = (last_epoch + 1) * FLAGS._steps_per_epoch
        if is_root_rank:
            logging.info('Loaded checkpoint {} at epoch {}.'.format(
                FLAGS.resume, last_epoch))
    else:
        lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
        # last_epoch = lr_scheduler.last_epoch
        last_epoch = -1
        best_val = 1.
        train_meters = get_meters('train')
        val_meters = get_meters('val')
        FLAGS._global_step = 0

    if not FLAGS.resume and is_root_rank:
        logging.info(model_wrapper)
    assert FLAGS.profiling, '`m.macs` is used for calculating penalty'
    if FLAGS.profiling:
        if 'gpu' in FLAGS.profiling:
            profiling(model, use_cuda=True)
        if 'cpu' in FLAGS.profiling:
            profiling(model, use_cuda=False)

    # data
    (train_transforms, val_transforms,
     test_transforms) = dataflow.data_transforms(FLAGS)
    (train_set, val_set, test_set) = dataflow.dataset(train_transforms,
                                                      val_transforms,
                                                      test_transforms, FLAGS)
    (train_loader, calib_loader, val_loader,
     test_loader) = dataflow.data_loader(train_set, val_set, test_set, FLAGS)

    # get bn's weights
    FLAGS._bn_to_prune = prune.get_bn_to_prune(model, FLAGS.prune_params)
    rho_scheduler = prune.get_rho_scheduler(FLAGS.prune_params,
                                            FLAGS._steps_per_epoch)

    if FLAGS.test_only and (test_loader is not None):
        if is_root_rank:
            logging.info('Start testing.')
        test_meters = get_meters('test')
        validate(last_epoch, calib_loader, test_loader, criterion, test_meters,
                 model_wrapper, ema, 'test')
        return

    # already broadcast by AllReduceDistributedDataParallel
    # optimizer load same checkpoint/same initialization

    if is_root_rank:
        logging.info('Start training.')

    for epoch in range(last_epoch + 1, FLAGS.num_epochs):
        # train
        results = run_one_epoch(epoch,
                                train_loader,
                                model_wrapper,
                                criterion_smooth,
                                optimizer,
                                lr_scheduler,
                                ema,
                                rho_scheduler,
                                train_meters,
                                phase='train')

        # val
        results, model_eval_wrapper = validate(epoch, calib_loader, val_loader,
                                               criterion, val_meters,
                                               model_wrapper, ema, 'val')

        if FLAGS.prune_params['method'] is not None:
            prune_threshold = FLAGS.model_shrink_threshold
            masks = prune.cal_mask_network_slimming_by_threshold(
                get_prune_weights(model_eval_wrapper), prune_threshold)
            FLAGS._bn_to_prune.add_info_list('mask', masks)
            flops_pruned, infos = prune.cal_pruned_flops(FLAGS._bn_to_prune)
            log_pruned_info(unwrap_model(model_eval_wrapper), flops_pruned,
                            infos, prune_threshold)
            if flops_pruned >= FLAGS.model_shrink_delta_flops \
                    or epoch == FLAGS.num_epochs - 1:
                ema_only = (epoch == FLAGS.num_epochs - 1)
                shrink_model(model_wrapper, ema, optimizer, FLAGS._bn_to_prune,
                             prune_threshold, ema_only)
        model_kwparams = mb.output_network(unwrap_model(model_wrapper))

        if results['top1_error'] < best_val:
            best_val = results['top1_error']

            if is_root_rank:
                save_status(model_wrapper, model_kwparams, optimizer, ema,
                            epoch, best_val, (train_meters, val_meters),
                            os.path.join(FLAGS.log_dir, 'best_model'))
                logging.info(
                    'New best validation top1 error: {:.4f}'.format(best_val))

        if is_root_rank:
            # save latest checkpoint
            save_status(model_wrapper, model_kwparams, optimizer, ema, epoch,
                        best_val, (train_meters, val_meters),
                        os.path.join(FLAGS.log_dir, 'latest_checkpoint'))

        # NOTE: from scheduler code, should be called after train/val
        # use stepwise scheduler instead
        # lr_scheduler.step()
    return