Example #1
0
def test_rdt_calculation(df, q, order):
    df = _pd_to_tfs(df, q)
    rdt_names = get_all_rdts(order)
    to = TwissOptics(df, quick_init=False)
    with suppress_warnings(RuntimeWarning):
        rdts = to.get_rdts(rdt_names)
    assert all([c in rdts for c in ["S"] + rdt_names])
Example #2
0
def _create_fullresponse_from_dict(var_to_twiss):
    """ Convert var-tfs dictionary to fullresponse dictionary """
    var_to_twiss = _add_coupling(var_to_twiss)
    resp = pandas.Panel.from_dict(var_to_twiss)
    resp = resp.transpose(2, 1, 0)
    # After transpose e.g: resp[NDX, bpm12l1.b1, kqt3]
    # The magnet called "0" is no change (nominal model)
    resp['NDX'] = resp.xs('DX', axis=0).div(np.sqrt(resp.xs('BETX', axis=0)), axis="index")
    resp['NDY'] = resp.xs('DY', axis=0).div(np.sqrt(resp.xs('BETY', axis=0)), axis="index")
    resp['BBX'] = resp.xs('BETX', axis=0).div(resp.loc['BETX', :, '0'], axis="index")
    resp['BBY'] = resp.xs('BETY', axis=0).div(resp.loc['BETY', :, '0'], axis="index")
    resp = resp.subtract(resp.xs('0', axis=2), axis=2)
    # Remove difference of nominal model with itself (bunch of zeros)
    resp.drop('0', axis=2, inplace=True)
    resp = resp.div(resp.loc['incr', :, :])

    with suppress_warnings(np.ComplexWarning):  # raised as everything is complex-type now
        df = {'MUX': resp.xs('MUX', axis=0).astype(np.float64),
              'MUY': resp.xs('MUY', axis=0).astype(np.float64),
              'BETX': resp.xs('BETX', axis=0).astype(np.float64),
              'BETY': resp.xs('BETY', axis=0).astype(np.float64),
              'BBX': resp.xs('BBX', axis=0).astype(np.float64),
              'BBY': resp.xs('BBY', axis=0).astype(np.float64),
              'DX': resp.xs('DX', axis=0).astype(np.float64),
              'DY': resp.xs('DY', axis=0).astype(np.float64),
              'NDX': resp.xs('NDX', axis=0).astype(np.float64),
              'NDY': resp.xs('NDY', axis=0).astype(np.float64),
              "F1001R": tfs.TfsDataFrame(resp.xs('1001', axis=0).apply(np.real).astype(np.float64)),
              "F1001I": tfs.TfsDataFrame(resp.xs('1001', axis=0).apply(np.imag).astype(np.float64)),
              "F1010R": tfs.TfsDataFrame(resp.xs('1010', axis=0).apply(np.real).astype(np.float64)),
              "F1010I": tfs.TfsDataFrame(resp.xs('1010', axis=0).apply(np.imag).astype(np.float64)),
              'Q': resp.loc[['Q1', 'Q2'], resp.major_axis[0], :].transpose().astype(np.float64),
              }
    return df
Example #3
0
def _create_fullresponse_from_dict(var_to_twiss):
    """ Convert var-tfs dictionary to fullresponse dictionary """
    var_to_twiss = _add_coupling(var_to_twiss)
    resp = pandas.Panel.from_dict(var_to_twiss)
    resp = resp.transpose(2, 1, 0)
    # After transpose e.g: resp[NDX, bpm12l1.b1, kqt3]
    # The magnet called "0" is no change (nominal model)
    resp['NDX'] = resp.xs('DX', axis=0).div(np.sqrt(resp.xs('BETX', axis=0)),
                                            axis="index")
    resp['NDY'] = resp.xs('DY', axis=0).div(np.sqrt(resp.xs('BETY', axis=0)),
                                            axis="index")
    resp['BBX'] = resp.xs('BETX', axis=0).div(resp.loc['BETX', :, '0'],
                                              axis="index")
    resp['BBY'] = resp.xs('BETY', axis=0).div(resp.loc['BETY', :, '0'],
                                              axis="index")
    resp = resp.subtract(resp.xs('0', axis=2), axis=2)
    # Remove difference of nominal model with itself (bunch of zeros)
    resp.drop('0', axis=2, inplace=True)
    resp = resp.div(resp.loc['incr', :, :])

    with suppress_warnings(
            np.ComplexWarning):  # raised as everything is complex-type now
        df = {
            'MUX':
            resp.xs('MUX', axis=0).astype(np.float64),
            'MUY':
            resp.xs('MUY', axis=0).astype(np.float64),
            'BETX':
            resp.xs('BETX', axis=0).astype(np.float64),
            'BETY':
            resp.xs('BETY', axis=0).astype(np.float64),
            'BBX':
            resp.xs('BBX', axis=0).astype(np.float64),
            'BBY':
            resp.xs('BBY', axis=0).astype(np.float64),
            'DX':
            resp.xs('DX', axis=0).astype(np.float64),
            'DY':
            resp.xs('DY', axis=0).astype(np.float64),
            'NDX':
            resp.xs('NDX', axis=0).astype(np.float64),
            'NDY':
            resp.xs('NDY', axis=0).astype(np.float64),
            "F1001R":
            tfs.TfsDataFrame(
                resp.xs('1001', axis=0).apply(np.real).astype(np.float64)),
            "F1001I":
            tfs.TfsDataFrame(
                resp.xs('1001', axis=0).apply(np.imag).astype(np.float64)),
            "F1010R":
            tfs.TfsDataFrame(
                resp.xs('1010', axis=0).apply(np.real).astype(np.float64)),
            "F1010I":
            tfs.TfsDataFrame(
                resp.xs('1010', axis=0).apply(np.imag).astype(np.float64)),
            'Q':
            resp.loc[['Q1', 'Q2'],
                     resp.major_axis[0], :].transpose().astype(np.float64),
        }
    return df
Example #4
0
def test_calculate_cmatrix(df):
    df.loc[:, "R11"] = np.sin(df["R"])
    df.loc[:, "R22"] = df["R11"]
    df.loc[:, "R21"] = np.cos(df["R"])
    df.loc[:, "R12"] = -df["R21"]
    df = _pd_to_tfs(df, (0, 0))
    to = TwissOptics(df.copy())
    with suppress_warnings(RuntimeWarning):
        cmat = to.get_cmatrix()
        couple = to.get_coupling(method="cmatrix")
        gamma = to.get_gamma()

    assert all([c in cmat for c in ['S', 'C11', 'C12', 'C21', 'C22']])
    assert all([c in couple for c in ['S', 'F1001', 'F1010']])
    assert all([c in gamma for c in ['S', 'GAMMA']])
    assert len(cmat.index.values) == len(df.index.values)
Example #5
0
def test_chromatic_beating(df, q):
    df = _pd_to_tfs(df, q)
    to = TwissOptics(df, quick_init=False)
    with suppress_warnings(RuntimeWarning):
        chrom_beat = to.get_chromatic_beating()
    assert all([c in chrom_beat for c in ["S", "DBEATX", "DBEATY"]])
Example #6
0
def test_linear_chromaticity(df, q):
    df = _pd_to_tfs(df, q)
    to = TwissOptics(df, quick_init=False)
    with suppress_warnings(RuntimeWarning):
        lchrom = to.get_linear_chromaticity()
    assert len(lchrom) == 2
Example #7
0
def test_linear_dispersion(df, q):
    df = _pd_to_tfs(df, q)
    to = TwissOptics(df, quick_init=False)
    with suppress_warnings(RuntimeWarning):
        disp = to.get_linear_dispersion()
    assert all([c in disp for c in ["S", "DX", "DY"]])
def plot_bbq_data(bbq_df,
                  interval=None,
                  xmin=None,
                  xmax=None,
                  ymin=None,
                  ymax=None,
                  output=None,
                  show=True,
                  two_plots=False):
    """ Plot BBQ data.

    Args:
        bbq_df: BBQ Dataframe with moving average columns
        interval: start and end time of used interval, will be marked with red bars
        xmin: Lower x limit (time)
        xmax: Upper x limit (time)
        ymin: Lower y limit (tune)
        ymax: Upper y limit (tune)
        output: Path to the output file
        show: Shows plot if `True`
        two_plots: Plots each tune in it's own axes if `True`

    Returns:
        Plotted figure

    """
    LOG.debug("Plotting BBQ data.")

    ps.set_style("standard", {u"lines.marker": u""})

    fig = plt.figure()

    if two_plots:
        gs = gridspec.GridSpec(2, 1, height_ratios=[1, 1])
        ax = [fig.add_subplot(gs[1]), fig.add_subplot(gs[0])]
    else:
        gs = gridspec.GridSpec(1, 1, height_ratios=[1])
        ax = fig.add_subplot(gs[0])
        ax = [ax, ax]

    bbq_df.index = [
        datetime.datetime.fromtimestamp(time, tz=TIMEZONE)
        for time in bbq_df.index
    ]

    for idx, plane in enumerate(PLANES):
        color = ps.get_mpl_color(idx)
        mask = bbq_df[COL_IN_MAV(plane)]

        with suppress_warnings(UserWarning):  # caused by _nolegend_
            bbq_df.plot(y=COL_BBQ(plane),
                        ax=ax[idx],
                        color=color,
                        alpha=.2,
                        label="_nolegend_")
        bbq_df.loc[mask, :].plot(y=COL_BBQ(plane),
                                 ax=ax[idx],
                                 color=color,
                                 alpha=.4,
                                 label="$Q_{:s}$ filtered".format(
                                     plane.lower()))
        bbq_df.plot(y=COL_MAV(plane),
                    ax=ax[idx],
                    color=color,
                    label="$Q_{:s}$ moving av.".format(plane.lower()))

        if ymin is None and two_plots:
            ax[idx].set_ylim(bottom=min(bbq_df.loc[mask, COL_BBQ(plane)]))

        if ymax is None and two_plots:
            ax[idx].set_ylim(top=max(bbq_df.loc[mask, COL_BBQ(plane)]))

    # things to add/do only once if there is only one plot
    for idx in range(1 + two_plots):
        if interval:
            ax[idx].axvline(x=interval[0], color="red")
            ax[idx].axvline(x=interval[1], color="red")

        ax[idx].set_ylabel('Tune')
        ax[idx].set_ylim(bottom=ymin, top=ymax)
        ax[idx].yaxis.set_major_formatter(FormatStrFormatter('%.5f'))

        ax[idx].set_xlim(left=xmin, right=xmax)
        ax[idx].set_xlabel('Time')
        ax[idx].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))

        # don't show labels on upper plot (if two plots)
        if idx:
            # use the visibility to allow cursor x-position to be shown
            ax[idx].tick_params(labelbottom=False)
            ax[idx].xaxis.get_label().set_visible(False)

    plt.tight_layout()

    if output:
        fig.savefig(output)
        ps.set_name(os.path.basename(output))

    if show:
        plt.draw()

    return fig