Example #1
0
 def run_epoch(self, sess, verbose=10):
     total_loss = []
     total_acc_num = []
     total_num = []
     for step, indices in enumerate(
             batch_index(len(self.train_doc_y), self.config.batch_size, 1),
             1):
         feed_dict = self.create_feed_dict(self.train_x[indices],
                                           self.train_sen_len[indices],
                                           self.train_doc_len[indices],
                                           self.train_doc_y[indices],
                                           self.config.keep_prob1,
                                           self.config.keep_prob2)
         _, loss, acc_num, lr = sess.run(
             [self.train_op, self.doc_loss, self.accuracy_num, self.lr],
             feed_dict=feed_dict)
         total_loss.append(loss)
         total_acc_num.append(acc_num)
         total_num.append(len(indices))
         if verbose and step % verbose == 0:
             print '\n[INFO] {} : loss = {}, acc = {}, lr = {}'.format(
                 step, np.mean(total_loss[-verbose:]),
                 sum(total_acc_num[-verbose:]) * 1.0 /
                 sum(total_num[-verbose:]), lr)
     return np.mean(total_loss), sum(total_acc_num) * 1.0 / sum(total_num)
Example #2
0
 def run_op(self,
            sess,
            op,
            data_x,
            sen_len,
            doc_len,
            doc_y=None,
            kp1=1.0,
            kp2=1.0):
     res_list = []
     len_list = []
     for indices in batch_index(len(data_x), self.config.batch_size, 1,
                                False, False):
         if doc_y is not None:
             feed_dict = self.create_feed_dict(data_x[indices],
                                               sen_len[indices],
                                               doc_len[indices],
                                               doc_y[indices], kp1, kp2)
         else:
             feed_dict = self.create_feed_dict(data_x[indices],
                                               sen_len[indices],
                                               doc_len[indices], None, kp1,
                                               kp2)
         res = sess.run(op, feed_dict=feed_dict)
         res_list.append(res.tolist())
         len_list.append(len(indices))
     if type(res_list[0]) is list:
         res = np.concatenate(res_list, axis=1)
     elif op is self.accuracy_num:
         res = sum(res_list)
     elif op is self.doc_logits:
         res = np.asarray(res_list)
     else:
         res = sum(res_list) * 1.0 / len(len_list)
     return res
Example #3
0
 def get_batch_data(xo, slo, yy, batch_size, kp1, kp2, is_shuffle=True):
     for index in batch_index(len(yy), batch_size, 1, is_shuffle):
         feed_dict = {
             x: xo[index],
             y: yy[index],
             sen_len: slo[index],
             keep_prob1: kp1,
             keep_prob2: kp2,
         }
         yield feed_dict, len(index)
Example #4
0
 def get_batch_data(xo, slo, dlo, xr, slr, dlr, yy, batch_size, kp1, kp2, is_shuffle=True):
     for index in batch_index(len(yy), batch_size, 1, is_shuffle):
         feed_dict = {
             x_o: xo[index],
             x_r: xr[index],
             y: yy[index],
             sen_len_o: slo[index],
             sen_len_r: slr[index],
             doc_len_o: dlo[index],
             doc_len_r: dlr[index],
             keep_prob1: kp1,
             keep_prob2: kp2,
         }
         yield feed_dict, len(index)
Example #5
0
 def get_batch_data(x_in,
                    y_in,
                    sen_len_in,
                    doc_len_in,
                    batch_size,
                    kp1,
                    kp2,
                    is_shuffle=True):
     for index in batch_index(len(y_in), batch_size, 1, is_shuffle):
         feed_dict = {
             x: x_in[index],
             y: y_in[index],
             sen_len: sen_len_in[index],
             doc_len: doc_len_in[index],
             keep_prob1: kp1,
             keep_prob2: kp2,
         }
         yield feed_dict, len(index)
Example #6
0
 def get_batch_data(x1,
                    x2,
                    len1,
                    len2,
                    yy,
                    batch_size,
                    kp1,
                    kp2,
                    is_shuffle=True):
     for index in batch_index(len(yy), batch_size, 1, is_shuffle):
         feed_dict = {
             x_l: x1[index],
             x_r: x2[index],
             y: yy[index],
             len_l: len1[index],
             len_r: len2[index],
             keep_prob1: kp1,
             keep_prob2: kp2,
         }
         yield feed_dict, len(index)