Example #1
0
def train_CNN(args):

    device = torch.device(
        "cuda" if torch.cuda.is_available() else "cpu")  #使用 gpu
    # Load word2vec model
    print("Loading data...")
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load sentences, labels, and training parameters
    print("Data processing...")
    train_data = TextData(args, args.train_file, word2idx, embedding_matrix)
    test_data = TextData(args, args.test_file, word2idx, embedding_matrix)
    train_loader = torch.utils.data.DataLoader(train_data,
                                               args.batch_size,
                                               shuffle=True,
                                               num_workers=1)
    test_loader = torch.utils.data.DataLoader(test_data,
                                              args.batch_size,
                                              shuffle=False,
                                              num_workers=1)

    model = CNN(args).to(device)
    #print(model)

    for epoch in range(1, args.epochs + 1):
        train(args, model, train_loader, device, epoch)
        test(model, device, test_loader)
Example #2
0
def test():
    logger.info("Loading Data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args.test_file, args.word2vec_file)
    logger.info("Data padding...")
    test_dataset = dh.MyData(test_data, args.pad_seq_len, device)
    test_loader = DataLoader(test_dataset,
                             batch_size=args.batch_size,
                             shuffle=False)
    VOCAB_SIZE, EMBEDDING_SIZE, pretrained_word2vec_matrix = dh.load_word2vec_matrix(
        args.word2vec_file)

    criterion = Loss()
    net = HMIDP(args, VOCAB_SIZE, EMBEDDING_SIZE,
                pretrained_word2vec_matrix).to(device)
    checkpoint_file = cm.get_best_checkpoint(CPT_DIR,
                                             select_maximum_value=False)
    checkpoint = torch.load(checkpoint_file)
    net.load_state_dict(checkpoint['model_state_dict'])
    net.eval()

    logger.info("Scoring...")
    true_labels, predicted_scores = [], []
    batches = trange(len(test_loader), desc="Batches", leave=True)
    for batch_cnt, batch in zip(batches, test_loader):
        x_test_fb_content, x_test_fb_question, x_test_fb_option, \
        x_test_fb_clens, x_test_fb_qlens, x_test_fb_olens, y_test_fb = batch
        logits, scores = net(x_test_fb_content, x_test_fb_question,
                             x_test_fb_option)
        for i in y_test_fb[0].tolist():
            true_labels.append(i)
        for j in scores[0].tolist():
            predicted_scores.append(j)

    # Calculate the Metrics
    test_rmse = mean_squared_error(true_labels, predicted_scores)**0.5
    test_r2 = r2_score(true_labels, predicted_scores)
    test_pcc, test_doa = dh.evaluation(true_labels, predicted_scores)
    logger.info(
        "All Test set: PCC {0:.4f} | DOA {1:.4f} | RMSE {2:.4f} | R2 {3:.4f}".
        format(test_pcc, test_doa, test_rmse, test_r2))
    logger.info('Test Finished.')

    logger.info('Creating the prediction file...')
    dh.create_prediction_file(save_dir=SAVE_DIR,
                              identifiers=test_data['f_id'],
                              predictions=predicted_scores)

    logger.info('All Finished.')
Example #3
0
def train_RNN(args, device):

    
    # Load word2vec model
    print("Loading data...")
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load sentences, labels, and training parameters
    print("Data processing...")
    train_data = TextData(args, args.train_file, word2idx, embedding_matrix)
    #	test_data = TextData(args, args.test_file, word2idx, embedding_matrix)
    train_loader = torch.utils.data.DataLoader(train_data, args.batch_size, shuffle=True, num_workers=1)
    #	test_loader = torch.utils.data.DataLoader(test_data, args.batch_size, shuffle=False, num_workers=1)

    model = SANN(args, device, ).to(device)
    print(model)

    for epoch in range(1, args.epochs + 1):
        train(args, model, train_loader, device, epoch)
def train_mann():
    """Training MANN model."""

    # Load sentences, labels, and training parameters
    logger.info('✔︎ Loading data...')

    logger.info('✔︎ Training data processing...')
    train_data = dh.load_data_and_labels(FLAGS.training_data_file,
                                         FLAGS.num_classes,
                                         FLAGS.embedding_dim)

    logger.info('✔︎ Validation data processing...')
    validation_data = \
        dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.num_classes, FLAGS.embedding_dim)

    logger.info('Recommended padding Sequence length is: {0}'.format(
        FLAGS.pad_seq_len))

    logger.info('✔︎ Training data padding...')
    x_train, y_train = dh.pad_data(train_data, FLAGS.pad_seq_len)

    logger.info('✔︎ Validation data padding...')
    x_validation, y_validation = dh.pad_data(validation_data,
                                             FLAGS.pad_seq_len)

    # Build vocabulary
    VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim)
    pretrained_word2vec_matrix = dh.load_word2vec_matrix(
        VOCAB_SIZE, FLAGS.embedding_dim)

    # Build a graph and mann object
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            mann = TextMANN(sequence_length=FLAGS.pad_seq_len,
                            num_classes=FLAGS.num_classes,
                            batch_size=FLAGS.batch_size,
                            vocab_size=VOCAB_SIZE,
                            lstm_hidden_size=FLAGS.lstm_hidden_size,
                            fc_hidden_size=FLAGS.fc_hidden_size,
                            embedding_size=FLAGS.embedding_dim,
                            embedding_type=FLAGS.embedding_type,
                            l2_reg_lambda=FLAGS.l2_reg_lambda,
                            pretrained_embedding=pretrained_word2vec_matrix)

            # Define training procedure
            with tf.control_dependencies(
                    tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                learning_rate = tf.train.exponential_decay(
                    learning_rate=FLAGS.learning_rate,
                    global_step=mann.global_step,
                    decay_steps=FLAGS.decay_steps,
                    decay_rate=FLAGS.decay_rate,
                    staircase=True)
                optimizer = tf.train.AdamOptimizer(learning_rate)
                grads, vars = zip(*optimizer.compute_gradients(mann.loss))
                grads, _ = tf.clip_by_global_norm(grads,
                                                  clip_norm=FLAGS.norm_ratio)
                train_op = optimizer.apply_gradients(
                    zip(grads, vars),
                    global_step=mann.global_step,
                    name="train_op")

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in zip(grads, vars):
                if g is not None:
                    grad_hist_summary = tf.summary.histogram(
                        "{0}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar(
                        "{0}/grad/sparsity".format(v.name),
                        tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            if FLAGS.train_or_restore == 'R':
                MODEL = input(
                    "☛ Please input the checkpoints model you want to restore, "
                    "it should be like(1490175368): "
                )  # The model you want to restore

                while not (MODEL.isdigit() and len(MODEL) == 10):
                    MODEL = input(
                        '✘ The format of your input is illegal, please re-input: '
                    )
                logger.info(
                    '✔︎ The format of your input is legal, now loading to next step...'
                )

                checkpoint_dir = 'runs/' + MODEL + '/checkpoints/'

                out_dir = os.path.abspath(
                    os.path.join(os.path.curdir, "runs", MODEL))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))
            else:
                timestamp = str(int(time.time()))
                out_dir = os.path.abspath(
                    os.path.join(os.path.curdir, "runs", timestamp))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))

            # Summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", mann.loss)

            # Train summaries
            train_summary_op = tf.summary.merge(
                [loss_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(
                train_summary_dir, sess.graph)

            # Validation summaries
            validation_summary_op = tf.summary.merge([loss_summary])
            validation_summary_dir = os.path.join(out_dir, "summaries",
                                                  "validation")
            validation_summary_writer = tf.summary.FileWriter(
                validation_summary_dir, sess.graph)

            saver = tf.train.Saver(tf.global_variables(),
                                   max_to_keep=FLAGS.num_checkpoints)

            if FLAGS.train_or_restore == 'R':
                # Load mann model
                logger.info("✔ Loading model...")
                checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
                logger.info(checkpoint_file)

                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph(
                    "{0}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
            else:
                checkpoint_dir = os.path.abspath(
                    os.path.join(out_dir, "checkpoints"))
                if not os.path.exists(checkpoint_dir):
                    os.makedirs(checkpoint_dir)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

                # Embedding visualization config
                config = projector.ProjectorConfig()
                embedding_conf = config.embeddings.add()
                embedding_conf.tensor_name = 'embedding'
                embedding_conf.metadata_path = FLAGS.metadata_file

                projector.visualize_embeddings(train_summary_writer, config)
                projector.visualize_embeddings(validation_summary_writer,
                                               config)

                # Save the embedding visualization
                saver.save(
                    sess, os.path.join(out_dir, 'embedding', 'embedding.ckpt'))

            current_step = sess.run(mann.global_step)

            def train_step(x_batch, y_batch):
                """A single training step"""
                feed_dict = {
                    mann.input_x: x_batch,
                    mann.input_y: y_batch,
                    mann.dropout_keep_prob: FLAGS.dropout_keep_prob,
                    mann.is_training: True
                }
                _, step, summaries, loss = sess.run(
                    [train_op, mann.global_step, train_summary_op, mann.loss],
                    feed_dict)
                logger.info("step {0}: loss {1:g}".format(step, loss))
                train_summary_writer.add_summary(summaries, step)

            def validation_step(x_validation, y_validation, writer=None):
                """Evaluates model on a validation set"""
                batches_validation = dh.batch_iter(
                    list(zip(x_validation, y_validation)), FLAGS.batch_size,
                    FLAGS.num_epochs)

                # Predict classes by threshold or topk ('ts': threshold; 'tk': topk)
                eval_counter, eval_loss, eval_rec_ts, eval_acc_ts, eval_F_ts = 0, 0.0, 0.0, 0.0, 0.0
                eval_rec_tk = [0.0] * FLAGS.top_num
                eval_acc_tk = [0.0] * FLAGS.top_num
                eval_F_tk = [0.0] * FLAGS.top_num

                for batch_validation in batches_validation:
                    x_batch_validation, y_batch_validation = zip(
                        *batch_validation)
                    feed_dict = {
                        mann.input_x: x_batch_validation,
                        mann.input_y: y_batch_validation,
                        mann.dropout_keep_prob: 1.0,
                        mann.is_training: False
                    }
                    step, summaries, scores, cur_loss = sess.run([
                        mann.global_step, validation_summary_op, mann.scores,
                        mann.loss
                    ], feed_dict)

                    # Predict by threshold
                    predicted_labels_threshold, predicted_values_threshold = \
                        dh.get_label_using_scores_by_threshold(scores=scores, threshold=FLAGS.threshold)

                    cur_rec_ts, cur_acc_ts, cur_F_ts = 0.0, 0.0, 0.0

                    for index, predicted_label_threshold in enumerate(
                            predicted_labels_threshold):
                        rec_inc_ts, acc_inc_ts, F_inc_ts = dh.cal_metric(
                            predicted_label_threshold,
                            y_batch_validation[index])
                        cur_rec_ts, cur_acc_ts, cur_F_ts = cur_rec_ts + rec_inc_ts, \
                                                           cur_acc_ts + acc_inc_ts, \
                                                           cur_F_ts + F_inc_ts

                    cur_rec_ts = cur_rec_ts / len(y_batch_validation)
                    cur_acc_ts = cur_acc_ts / len(y_batch_validation)
                    cur_F_ts = cur_F_ts / len(y_batch_validation)

                    eval_rec_ts, eval_acc_ts, eval_F_ts = eval_rec_ts + cur_rec_ts, \
                                                          eval_acc_ts + cur_acc_ts, \
                                                          eval_F_ts + cur_F_ts

                    # Predict by topK
                    topK_predicted_labels = []
                    for top_num in range(FLAGS.top_num):
                        predicted_labels_topk, predicted_values_topk = \
                            dh.get_label_using_scores_by_topk(scores=scores, top_num=top_num+1)
                        topK_predicted_labels.append(predicted_labels_topk)

                    cur_rec_tk = [0.0] * FLAGS.top_num
                    cur_acc_tk = [0.0] * FLAGS.top_num
                    cur_F_tk = [0.0] * FLAGS.top_num

                    for top_num, predicted_labels_topK in enumerate(
                            topK_predicted_labels):
                        for index, predicted_label_topK in enumerate(
                                predicted_labels_topK):
                            rec_inc_tk, acc_inc_tk, F_inc_tk = dh.cal_metric(
                                predicted_label_topK,
                                y_batch_validation[index])
                            cur_rec_tk[top_num], cur_acc_tk[top_num], cur_F_tk[top_num] = \
                                cur_rec_tk[top_num] + rec_inc_tk, \
                                cur_acc_tk[top_num] + acc_inc_tk, \
                                cur_F_tk[top_num] + F_inc_tk

                        cur_rec_tk[top_num] = cur_rec_tk[top_num] / len(
                            y_batch_validation)
                        cur_acc_tk[top_num] = cur_acc_tk[top_num] / len(
                            y_batch_validation)
                        cur_F_tk[top_num] = cur_F_tk[top_num] / len(
                            y_batch_validation)

                        eval_rec_tk[top_num], eval_acc_tk[top_num], eval_F_tk[top_num] = \
                            eval_rec_tk[top_num] + cur_rec_tk[top_num], \
                            eval_acc_tk[top_num] + cur_acc_tk[top_num], \
                            eval_F_tk[top_num] + cur_F_tk[top_num]

                    eval_loss = eval_loss + cur_loss
                    eval_counter = eval_counter + 1

                    logger.info("✔︎ validation batch {0}: loss {1:g}".format(
                        eval_counter, cur_loss))
                    logger.info(
                        "︎☛ Predict by threshold: recall {0:g}, accuracy {1:g}, F {2:g}"
                        .format(cur_rec_ts, cur_acc_ts, cur_F_ts))

                    logger.info("︎☛ Predict by topK:")
                    for top_num in range(FLAGS.top_num):
                        logger.info(
                            "Top{0}: recall {1:g}, accuracy {2:g}, F {3:g}".
                            format(top_num + 1, cur_rec_tk[top_num],
                                   cur_acc_tk[top_num], cur_F_tk[top_num]))

                    if writer:
                        writer.add_summary(summaries, step)

                eval_loss = float(eval_loss / eval_counter)
                eval_rec_ts = float(eval_rec_ts / eval_counter)
                eval_acc_ts = float(eval_acc_ts / eval_counter)
                eval_F_ts = float(eval_F_ts / eval_counter)

                for top_num in range(FLAGS.top_num):
                    eval_rec_tk[top_num] = float(eval_rec_tk[top_num] /
                                                 eval_counter)
                    eval_acc_tk[top_num] = float(eval_acc_tk[top_num] /
                                                 eval_counter)
                    eval_F_tk[top_num] = float(eval_F_tk[top_num] /
                                               eval_counter)

                return eval_loss, eval_rec_ts, eval_acc_ts, eval_F_ts, eval_rec_tk, eval_acc_tk, eval_F_tk

            # Generate batches
            batches_train = dh.batch_iter(list(zip(x_train, y_train)),
                                          FLAGS.batch_size, FLAGS.num_epochs)

            num_batches_per_epoch = int(
                (len(x_train) - 1) / FLAGS.batch_size) + 1

            # Training loop. For each batch...
            for batch_train in batches_train:
                x_batch_train, y_batch_train = zip(*batch_train)
                train_step(x_batch_train, y_batch_train)
                current_step = tf.train.global_step(sess, mann.global_step)

                if current_step % FLAGS.evaluate_every == 0:
                    logger.info("\nEvaluation:")
                    eval_loss, eval_rec_ts, eval_acc_ts, eval_F_ts, eval_rec_tk, eval_acc_tk, eval_F_tk = \
                        validation_step(x_validation, y_validation, writer=validation_summary_writer)

                    logger.info(
                        "All Validation set: Loss {0:g}".format(eval_loss))

                    # Predict by threshold
                    logger.info(
                        "︎☛ Predict by threshold: Recall {0:g}, Accuracy {1:g}, F {2:g}"
                        .format(eval_rec_ts, eval_acc_ts, eval_F_ts))

                    # Predict by topK
                    logger.info("︎☛ Predict by topK:")
                    for top_num in range(FLAGS.top_num):
                        logger.info(
                            "Top{0}: Recall {1:g}, Accuracy {2:g}, F {3:g}".
                            format(top_num + 1, eval_rec_tk[top_num],
                                   eval_acc_tk[top_num], eval_F_tk[top_num]))
                if current_step % FLAGS.checkpoint_every == 0:
                    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
                    path = saver.save(sess,
                                      checkpoint_prefix,
                                      global_step=current_step)
                    logger.info(
                        "✔︎ Saved model checkpoint to {0}\n".format(path))
                if current_step % num_batches_per_epoch == 0:
                    current_epoch = current_step // num_batches_per_epoch
                    logger.info(
                        "✔︎ Epoch {0} has finished!".format(current_epoch))

    logger.info("✔︎ Done.")
def train_fasttext():
    """Training FASTTEXT model."""

    # Load sentences, labels, and training parameters
    logger.info('✔︎ Loading data...')

    logger.info('✔︎ Training data processing...')
    train_data = dh.load_data_and_labels(FLAGS.training_data_file,
                                         FLAGS.num_classes,
                                         FLAGS.embedding_dim)

    logger.info('✔︎ Validation data processing...')
    validation_data = \
        dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.num_classes, FLAGS.embedding_dim)

    logger.info('Recommended padding Sequence length is: {0}'.format(
        FLAGS.pad_seq_len))

    logger.info('✔︎ Training data padding...')
    x_train, y_train = dh.pad_data(train_data, FLAGS.pad_seq_len)

    logger.info('✔︎ Validation data padding...')
    x_validation, y_validation = dh.pad_data(validation_data,
                                             FLAGS.pad_seq_len)

    y_validation_bind = validation_data.labels_bind

    # Build vocabulary
    VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim)
    pretrained_word2vec_matrix = dh.load_word2vec_matrix(
        VOCAB_SIZE, FLAGS.embedding_dim)

    # Build a graph and fasttext object
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            fasttext = TextFAST(
                sequence_length=FLAGS.pad_seq_len,
                num_classes=FLAGS.num_classes,
                vocab_size=VOCAB_SIZE,
                fc_hidden_size=FLAGS.fc_hidden_size,
                embedding_size=FLAGS.embedding_dim,
                embedding_type=FLAGS.embedding_type,
                l2_reg_lambda=FLAGS.l2_reg_lambda,
                pretrained_embedding=pretrained_word2vec_matrix)

            # Define Training procedure
            # learning_rate = tf.train.exponential_decay(learning_rate=FLAGS.learning_rate, global_step=cnn.global_step,
            #                                            decay_steps=FLAGS.decay_steps, decay_rate=FLAGS.decay_rate,
            #                                            staircase=True)
            optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
            grads_and_vars = optimizer.compute_gradients(fasttext.loss)
            train_op = optimizer.apply_gradients(
                grads_and_vars,
                global_step=fasttext.global_step,
                name="train_op")

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in grads_and_vars:
                if g is not None:
                    grad_hist_summary = tf.summary.histogram(
                        "{0}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar(
                        "{0}/grad/sparsity".format(v.name),
                        tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            if FLAGS.train_or_restore == 'R':
                MODEL = input(
                    "☛ Please input the checkpoints model you want to restore, "
                    "it should be like(1490175368): "
                )  # The model you want to restore

                while not (MODEL.isdigit() and len(MODEL) == 10):
                    MODEL = input(
                        '✘ The format of your input is illegal, please re-input: '
                    )
                logger.info(
                    '✔︎ The format of your input is legal, now loading to next step...'
                )

                checkpoint_dir = 'runs/' + MODEL + '/checkpoints/'

                out_dir = os.path.abspath(
                    os.path.join(os.path.curdir, "runs", MODEL))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))
            else:
                timestamp = str(int(time.time()))
                out_dir = os.path.abspath(
                    os.path.join(os.path.curdir, "runs", timestamp))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))

            # Summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", fasttext.loss)
            # acc_summary = tf.summary.scalar("accuracy", fasttext.accuracy)

            # Train Summaries
            train_summary_op = tf.summary.merge(
                [loss_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(
                train_summary_dir, sess.graph)

            # Validation summaries
            validation_summary_op = tf.summary.merge([loss_summary])
            validation_summary_dir = os.path.join(out_dir, "summaries",
                                                  "validation")
            validation_summary_writer = tf.summary.FileWriter(
                validation_summary_dir, sess.graph)

            saver = tf.train.Saver(tf.global_variables(),
                                   max_to_keep=FLAGS.num_checkpoints)

            if FLAGS.train_or_restore == 'R':
                # Load fasttext model
                logger.info("✔ Loading model...")
                checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
                logger.info(checkpoint_file)

                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph(
                    "{0}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
            else:
                checkpoint_dir = os.path.abspath(
                    os.path.join(out_dir, "checkpoints"))
                if not os.path.exists(checkpoint_dir):
                    os.makedirs(checkpoint_dir)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

            current_step = sess.run(fasttext.global_step)

            def train_step(x_batch, y_batch):
                """A single training step"""
                feed_dict = {
                    fasttext.input_x: x_batch,
                    fasttext.input_y: y_batch,
                    fasttext.dropout_keep_prob: FLAGS.dropout_keep_prob,
                    fasttext.is_training: True
                }
                _, step, summaries, loss = sess.run([
                    train_op, fasttext.global_step, train_summary_op,
                    fasttext.loss
                ], feed_dict)
                time_str = datetime.datetime.now().isoformat()
                logger.info("{0}: step {1}, loss {2:g}".format(
                    time_str, step, loss))
                train_summary_writer.add_summary(summaries, step)

            def validation_step(x_validation,
                                y_validation,
                                y_validation_bind,
                                writer=None):
                """Evaluates model on a validation set"""
                batches_validation = dh.batch_iter(
                    list(zip(x_validation, y_validation, y_validation_bind)),
                    FLAGS.batch_size, FLAGS.num_epochs)
                eval_loss, eval_rec, eval_acc, eval_counter = 0.0, 0.0, 0.0, 0
                for batch_validation in batches_validation:
                    x_batch_validation, y_batch_validation, y_batch_validation_bind = zip(
                        *batch_validation)
                    feed_dict = {
                        fasttext.input_x: x_batch_validation,
                        fasttext.input_y: y_batch_validation,
                        fasttext.dropout_keep_prob: 1.0,
                        fasttext.is_training: False
                    }
                    step, summaries, logits, cur_loss = sess.run([
                        fasttext.global_step, validation_summary_op,
                        fasttext.logits, fasttext.loss
                    ], feed_dict)

                    if FLAGS.use_classbind_or_not == 'Y':
                        predicted_labels = dh.get_label_using_logits_and_classbind(
                            logits,
                            y_batch_validation_bind,
                            top_number=FLAGS.top_num)
                    if FLAGS.use_classbind_or_not == 'N':
                        predicted_labels = dh.get_label_using_logits(
                            logits, top_number=FLAGS.top_num)

                    cur_rec, cur_acc = 0.0, 0.0
                    for index, predicted_label in enumerate(predicted_labels):
                        rec_inc, acc_inc = dh.cal_rec_and_acc(
                            predicted_label, y_batch_validation[index])
                        cur_rec, cur_acc = cur_rec + rec_inc, cur_acc + acc_inc

                    cur_rec = cur_rec / len(y_batch_validation)
                    cur_acc = cur_acc / len(y_batch_validation)

                    eval_loss, eval_rec, eval_acc, eval_counter = eval_loss + cur_loss, eval_rec + cur_rec, \
                                                                  eval_acc + cur_acc, eval_counter + 1
                    logger.info("✔︎ validation batch {0} finished.".format(
                        eval_counter))

                    if writer:
                        writer.add_summary(summaries, step)

                eval_loss = float(eval_loss / eval_counter)
                eval_rec = float(eval_rec / eval_counter)
                eval_acc = float(eval_acc / eval_counter)

                return eval_loss, eval_rec, eval_acc

            # Generate batches
            batches_train = dh.batch_iter(list(zip(x_train, y_train)),
                                          FLAGS.batch_size, FLAGS.num_epochs)

            # Training loop. For each batch...
            for batch_train in batches_train:
                x_batch_train, y_batch_train = zip(*batch_train)
                train_step(x_batch_train, y_batch_train)
                current_step = tf.train.global_step(sess, fasttext.global_step)

                if current_step % FLAGS.evaluate_every == 0:
                    logger.info("\nEvaluation:")
                    eval_loss, eval_rec, eval_acc = validation_step(
                        x_validation,
                        y_validation,
                        y_validation_bind,
                        writer=validation_summary_writer)
                    time_str = datetime.datetime.now().isoformat()
                    logger.info(
                        "{0}: step {1}, loss {2:g}, rec {3:g}, acc {4:g}".
                        format(time_str, current_step, eval_loss, eval_rec,
                               eval_acc))

                if current_step % FLAGS.checkpoint_every == 0:
                    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
                    path = saver.save(sess,
                                      checkpoint_prefix,
                                      global_step=current_step)
                    logger.info(
                        "✔︎ Saved model checkpoint to {0}\n".format(path))

    logger.info("✔︎ Done.")
Example #6
0
def train_sann():
    """Training RNN model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load word2vec model
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load sentences, labels, and training parameters
    logger.info("Loading data...")
    logger.info("Data processing...")
    train_data = dh.load_data_and_labels(args, args.train_file, word2idx)
    val_data = dh.load_data_and_labels(args, args.validation_file, word2idx)

    # Build a graph and sann object
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            sann = TextSANN(sequence_length=args.pad_seq_len,
                            vocab_size=len(word2idx),
                            embedding_type=args.embedding_type,
                            embedding_size=args.embedding_dim,
                            lstm_hidden_size=args.lstm_dim,
                            attention_unit_size=args.attention_dim,
                            attention_hops_size=args.attention_hops_dim,
                            fc_hidden_size=args.fc_dim,
                            num_classes=args.num_classes,
                            l2_reg_lambda=args.l2_lambda,
                            pretrained_embedding=embedding_matrix)

            # Define training procedure
            with tf.control_dependencies(
                    tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                learning_rate = tf.train.exponential_decay(
                    learning_rate=args.learning_rate,
                    global_step=sann.global_step,
                    decay_steps=args.decay_steps,
                    decay_rate=args.decay_rate,
                    staircase=True)
                optimizer = tf.train.AdamOptimizer(learning_rate)
                grads, vars = zip(*optimizer.compute_gradients(sann.loss))
                grads, _ = tf.clip_by_global_norm(grads,
                                                  clip_norm=args.norm_ratio)
                train_op = optimizer.apply_gradients(
                    zip(grads, vars),
                    global_step=sann.global_step,
                    name="train_op")

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in zip(grads, vars):
                if g is not None:
                    grad_hist_summary = tf.summary.histogram(
                        "{0}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar(
                        "{0}/grad/sparsity".format(v.name),
                        tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            out_dir = dh.get_out_dir(OPTION, logger)
            checkpoint_dir = os.path.abspath(
                os.path.join(out_dir, "checkpoints"))
            best_checkpoint_dir = os.path.abspath(
                os.path.join(out_dir, "bestcheckpoints"))

            # Summaries for loss
            loss_summary = tf.summary.scalar("loss", sann.loss)

            # Train summaries
            train_summary_op = tf.summary.merge(
                [loss_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(
                train_summary_dir, sess.graph)

            # Validation summaries
            validation_summary_op = tf.summary.merge([loss_summary])
            validation_summary_dir = os.path.join(out_dir, "summaries",
                                                  "validation")
            validation_summary_writer = tf.summary.FileWriter(
                validation_summary_dir, sess.graph)

            saver = tf.train.Saver(tf.global_variables(),
                                   max_to_keep=args.num_checkpoints)
            best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir,
                                                num_to_keep=3,
                                                maximize=True)

            if OPTION == 'R':
                # Load sann model
                logger.info("Loading model...")
                checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
                logger.info(checkpoint_file)

                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph(
                    "{0}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
            if OPTION == 'T':
                if not os.path.exists(checkpoint_dir):
                    os.makedirs(checkpoint_dir)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

                # Embedding visualization config
                config = projector.ProjectorConfig()
                embedding_conf = config.embeddings.add()
                embedding_conf.tensor_name = "embedding"
                embedding_conf.metadata_path = args.metadata_file

                projector.visualize_embeddings(train_summary_writer, config)
                projector.visualize_embeddings(validation_summary_writer,
                                               config)

                # Save the embedding visualization
                saver.save(
                    sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))

            current_step = sess.run(sann.global_step)

            def train_step(batch_data):
                """A single training step."""
                x_f, x_b, y_onehot = zip(*batch_data)

                feed_dict = {
                    sann.input_x_front: x_f,
                    sann.input_x_behind: x_b,
                    sann.input_y: y_onehot,
                    sann.dropout_keep_prob: args.dropout_rate,
                    sann.is_training: True
                }
                _, step, summaries, loss = sess.run(
                    [train_op, sann.global_step, train_summary_op, sann.loss],
                    feed_dict)
                logger.info("step {0}: loss {1:g}".format(step, loss))
                train_summary_writer.add_summary(summaries, step)

            def validation_step(val_loader, writer=None):
                """Evaluates model on a validation set."""
                batches_validation = dh.batch_iter(
                    list(create_input_data(val_loader)), args.batch_size, 1)

                eval_counter, eval_loss = 0, 0.0
                true_labels = []
                predicted_scores = []
                predicted_labels = []

                for batch_validation in batches_validation:
                    x_f, x_b, y_onehot = zip(*batch_validation)
                    feed_dict = {
                        sann.input_x_front: x_f,
                        sann.input_x_behind: x_b,
                        sann.input_y: y_onehot,
                        sann.dropout_keep_prob: 1.0,
                        sann.is_training: False
                    }
                    step, summaries, predictions, cur_loss = sess.run([
                        sann.global_step, validation_summary_op,
                        sann.topKPreds, sann.loss
                    ], feed_dict)

                    # Prepare for calculating metrics
                    for i in y_onehot:
                        true_labels.append(np.argmax(i))
                    for j in predictions[0]:
                        predicted_scores.append(j[0])
                    for k in predictions[1]:
                        predicted_labels.append(k[0])

                    eval_loss = eval_loss + cur_loss
                    eval_counter = eval_counter + 1

                    if writer:
                        writer.add_summary(summaries, step)

                eval_loss = float(eval_loss / eval_counter)

                # Calculate Precision & Recall & F1
                eval_acc = accuracy_score(y_true=np.array(true_labels),
                                          y_pred=np.array(predicted_labels))
                eval_pre = precision_score(y_true=np.array(true_labels),
                                           y_pred=np.array(predicted_labels),
                                           average='micro')
                eval_rec = recall_score(y_true=np.array(true_labels),
                                        y_pred=np.array(predicted_labels),
                                        average='micro')
                eval_F1 = f1_score(y_true=np.array(true_labels),
                                   y_pred=np.array(predicted_labels),
                                   average='micro')

                # Calculate the average AUC
                eval_auc = roc_auc_score(y_true=np.array(true_labels),
                                         y_score=np.array(predicted_scores),
                                         average='micro')

                return eval_loss, eval_acc, eval_pre, eval_rec, eval_F1, eval_auc

            # Generate batches
            batches_train = dh.batch_iter(list(create_input_data(train_data)),
                                          args.batch_size, args.epochs)
            num_batches_per_epoch = int(
                (len(train_data['f_pad_seqs']) - 1) / args.batch_size) + 1

            # Training loop. For each batch...
            for batch_train in batches_train:
                train_step(batch_train)
                current_step = tf.train.global_step(sess, sann.global_step)

                if current_step % args.evaluate_steps == 0:
                    logger.info("\nEvaluation:")
                    eval_loss, eval_acc, eval_pre, eval_rec, eval_F1, eval_auc = \
                        validation_step(val_data, writer=validation_summary_writer)
                    logger.info(
                        "All Validation set: Loss {0:g} | Acc {1:g} | Precision {2:g} | "
                        "Recall {3:g} | F1 {4:g} | AUC {5:g}".format(
                            eval_loss, eval_acc, eval_pre, eval_rec, eval_F1,
                            eval_auc))
                    best_saver.handle(eval_acc, sess, current_step)
                if current_step % args.checkpoint_steps == 0:
                    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
                    path = saver.save(sess,
                                      checkpoint_prefix,
                                      global_step=current_step)
                    logger.info("Saved model checkpoint to {0}\n".format(path))
                if current_step % num_batches_per_epoch == 0:
                    current_epoch = current_step // num_batches_per_epoch
                    logger.info(
                        "Epoch {0} has finished!".format(current_epoch))

    logger.info("All Done.")
def test_sann():
    """Test SANN model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load word2vec model
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args, args.test_file, word2idx)

    # Load sann model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR,
                                                 select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            scores = graph.get_operation_by_name("output/scores").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-sann-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(create_input_data(test_data)),
                                    args.batch_size,
                                    1,
                                    shuffle=False)

            # Collect the predictions here
            test_counter, test_loss = 0, 0.0
            test_pre_tk = [0.0] * args.topK
            test_rec_tk = [0.0] * args.topK
            test_F1_tk = [0.0] * args.topK

            # Collect the predictions here
            true_labels = []
            predicted_labels = []
            predicted_scores = []

            # Collect for calculating metrics
            true_onehot_labels = []
            predicted_onehot_scores = []
            predicted_onehot_labels_ts = []
            predicted_onehot_labels_tk = [[] for _ in range(args.topK)]

            for batch_test in batches:
                x, y_onehot, y = zip(*batch_test)
                feed_dict = {
                    input_x: x,
                    input_y: y_onehot,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }

                batch_scores, cur_loss = sess.run([scores, loss], feed_dict)

                # Prepare for calculating metrics
                for i in y_onehot:
                    true_onehot_labels.append(i)
                for j in batch_scores:
                    predicted_onehot_scores.append(j)

                # Get the predicted labels by threshold
                batch_predicted_labels_ts, batch_predicted_scores_ts = \
                    dh.get_label_threshold(scores=batch_scores, threshold=args.threshold)

                # Add results to collection
                for i in y:
                    true_labels.append(i)
                for j in batch_predicted_labels_ts:
                    predicted_labels.append(j)
                for k in batch_predicted_scores_ts:
                    predicted_scores.append(k)

                # Get onehot predictions by threshold
                batch_predicted_onehot_labels_ts = \
                    dh.get_onehot_label_threshold(scores=batch_scores, threshold=args.threshold)
                for i in batch_predicted_onehot_labels_ts:
                    predicted_onehot_labels_ts.append(i)

                # Get onehot predictions by topK
                for top_num in range(args.topK):
                    batch_predicted_onehot_labels_tk = dh.get_onehot_label_topk(
                        scores=batch_scores, top_num=top_num + 1)

                    for i in batch_predicted_onehot_labels_tk:
                        predicted_onehot_labels_tk[top_num].append(i)

                test_loss = test_loss + cur_loss
                test_counter = test_counter + 1

            # Calculate Precision & Recall & F1
            test_pre_ts = precision_score(
                y_true=np.array(true_onehot_labels),
                y_pred=np.array(predicted_onehot_labels_ts),
                average='micro')
            test_rec_ts = recall_score(
                y_true=np.array(true_onehot_labels),
                y_pred=np.array(predicted_onehot_labels_ts),
                average='micro')
            test_F1_ts = f1_score(y_true=np.array(true_onehot_labels),
                                  y_pred=np.array(predicted_onehot_labels_ts),
                                  average='micro')

            for top_num in range(args.topK):
                test_pre_tk[top_num] = precision_score(
                    y_true=np.array(true_onehot_labels),
                    y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                    average='micro')
                test_rec_tk[top_num] = recall_score(
                    y_true=np.array(true_onehot_labels),
                    y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                    average='micro')
                test_F1_tk[top_num] = f1_score(
                    y_true=np.array(true_onehot_labels),
                    y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                    average='micro')

            # Calculate the average AUC
            test_auc = roc_auc_score(y_true=np.array(true_onehot_labels),
                                     y_score=np.array(predicted_onehot_scores),
                                     average='micro')

            # Calculate the average PR
            test_prc = average_precision_score(
                y_true=np.array(true_onehot_labels),
                y_score=np.array(predicted_onehot_scores),
                average="micro")
            test_loss = float(test_loss / test_counter)

            logger.info(
                "All Test Dataset: Loss {0:g} | AUC {1:g} | AUPRC {2:g}".
                format(test_loss, test_auc, test_prc))

            # Predict by threshold
            logger.info(
                "Predict by threshold: Precision {0:g}, Recall {1:g}, F1 {2:g}"
                .format(test_pre_ts, test_rec_ts, test_F1_ts))

            # Predict by topK
            logger.info("Predict by topK:")
            for top_num in range(args.topK):
                logger.info(
                    "Top{0}: Precision {1:g}, Recall {2:g}, F1 {3:g}".format(
                        top_num + 1, test_pre_tk[top_num],
                        test_rec_tk[top_num], test_F1_tk[top_num]))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR +
                                      "/predictions.json",
                                      data_id=test_data['id'],
                                      true_labels=true_labels,
                                      predict_labels=predicted_labels,
                                      predict_scores=predicted_scores)

    logger.info("All Done.")
def test_cnn():
    """Test CNN model."""

    # Load data
    logger.info("✔ Loading data...")
    logger.info('Recommended padding Sequence length is: {0}'.format(
        FLAGS.pad_seq_len))

    logger.info('✔︎ Test data processing...')
    test_data = dh.load_data_and_labels(FLAGS.test_data_file,
                                        FLAGS.num_classes, FLAGS.embedding_dim)

    logger.info('✔︎ Test data padding...')
    x_test, y_test = dh.pad_data(test_data, FLAGS.pad_seq_len)
    y_test_bind = test_data.labels_bind

    # Build vocabulary
    VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim)
    pretrained_word2vec_matrix = dh.load_word2vec_matrix(
        VOCAB_SIZE, FLAGS.embedding_dim)

    # Load cnn model
    logger.info("✔ Loading model...")
    checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]

            # input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]

            # pre-trained_word2vec
            pretrained_embedding = graph.get_operation_by_name(
                "embedding/embedding").outputs[0]

            # Tensors we want to evaluate
            logits = graph.get_operation_by_name("output/logits").outputs[0]

            # Generate batches for one epoch
            batches = dh.batch_iter(list(zip(x_test, y_test, y_test_bind)),
                                    FLAGS.batch_size,
                                    1,
                                    shuffle=False)

            # Collect the predictions here
            all_predicitons = []
            eval_loss, eval_rec, eval_acc, eval_counter = 0.0, 0.0, 0.0, 0
            for batch_test in batches:
                x_batch_test, y_batch_test, y_batch_test_bind = zip(
                    *batch_test)
                feed_dict = {input_x: x_batch_test, dropout_keep_prob: 1.0}
                batch_logits = sess.run(logits, feed_dict)

                if FLAGS.use_classbind_or_not == 'Y':
                    predicted_labels = dh.get_label_using_logits_and_classbind(
                        batch_logits,
                        y_batch_test_bind,
                        top_number=FLAGS.top_num)
                if FLAGS.use_classbind_or_not == 'N':
                    predicted_labels = dh.get_label_using_logits(
                        batch_logits, top_number=FLAGS.top_num)

                all_predicitons = np.append(all_predicitons, predicted_labels)
                cur_rec, cur_acc = 0.0, 0.0
                for index, predicted_label in enumerate(predicted_labels):
                    rec_inc, acc_inc = dh.cal_rec_and_acc(
                        predicted_label, y_batch_test[index])
                    cur_rec, cur_acc = cur_rec + rec_inc, cur_acc + acc_inc

                cur_rec = cur_rec / len(y_batch_test)
                cur_acc = cur_acc / len(y_batch_test)

                eval_rec, eval_acc, eval_counter = eval_rec + cur_rec, eval_acc + cur_acc, eval_counter + 1
                logger.info(
                    "✔︎ validation batch {0} finished.".format(eval_counter))

            eval_rec = float(eval_rec / eval_counter)
            eval_acc = float(eval_acc / eval_counter)
            logger.info("☛ Recall {0:g}, Accuracy {1:g}".format(
                eval_rec, eval_acc))
            np.savetxt(SAVE_FILE, list(zip(all_predicitons)), fmt='%s')

    logger.info("✔ Done.")
def train():
    """Training RMIDP model."""
    dh.tab_printer(args, logger)

    # Load sentences, labels, and training parameters
    logger.info("Loading data...")
    logger.info("Data processing...")
    train_data = dh.load_data_and_labels(args.train_file, args.word2vec_file)
    val_data = dh.load_data_and_labels(args.validation_file, args.word2vec_file)

    logger.info("Data padding...")
    train_dataset = dh.MyData(train_data, args.pad_seq_len, device)
    val_dataset = dh.MyData(val_data, args.pad_seq_len, device)

    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False)

    # Load word2vec model
    VOCAB_SIZE, EMBEDDING_SIZE, pretrained_word2vec_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Init network
    logger.info("Init nn...")
    net = RMIDP(args, VOCAB_SIZE, EMBEDDING_SIZE, pretrained_word2vec_matrix).to(device)

    print("Model's state_dict:")
    for param_tensor in net.state_dict():
        print(param_tensor, "\t", net.state_dict()[param_tensor].size())

    criterion = Loss()
    optimizer = torch.optim.Adam(net.parameters(), lr=args.learning_rate, weight_decay=args.l2_lambda)

    if OPTION == 'T':
        timestamp = str(int(time.time()))
        out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
        saver = cm.BestCheckpointSaver(save_dir=out_dir, num_to_keep=args.num_checkpoints, maximize=False)
        logger.info("Writing to {0}\n".format(out_dir))
    elif OPTION == 'R':
        timestamp = input("[Input] Please input the checkpoints model you want to restore: ")
        while not (timestamp.isdigit() and len(timestamp) == 10):
            timestamp = input("[Warning] The format of your input is illegal, please re-input: ")
        out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
        saver = cm.BestCheckpointSaver(save_dir=out_dir, num_to_keep=args.num_checkpoints, maximize=False)
        logger.info("Writing to {0}\n".format(out_dir))
        checkpoint = torch.load(out_dir)
        net.load_state_dict(checkpoint['model_state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])

    logger.info("Training...")
    writer = SummaryWriter('summary')

    def eval_model(val_loader, epoch):
        """
        Evaluate on the validation set.
        """
        net.eval()
        eval_loss = 0.0
        true_labels, predicted_scores = [], []
        for batch in val_loader:
            x_val_fb_content, x_val_fb_question, x_val_fb_option, \
            x_val_fb_clens, x_val_fb_qlens, x_val_fb_olens, y_val_fb = batch

            logits, scores = net(x_val_fb_content, x_val_fb_question, x_val_fb_option)
            avg_batch_loss = criterion(scores, y_val_fb)
            eval_loss = eval_loss + avg_batch_loss.item()
            for i in y_val_fb[0].tolist():
                true_labels.append(i)
            for j in scores[0].tolist():
                predicted_scores.append(j)

        # Calculate the Metrics
        eval_rmse = mean_squared_error(true_labels, predicted_scores) ** 0.5
        eval_r2 = r2_score(true_labels, predicted_scores)
        eval_pcc, eval_doa = dh.evaluation(true_labels, predicted_scores)
        eval_loss = eval_loss / len(val_loader)
        cur_value = eval_rmse
        logger.info("All Validation set: Loss {0:g} | PCC {1:.4f} | DOA {2:.4f} | RMSE {3:.4f} | R2 {4:.4f}"
                    .format(eval_loss, eval_pcc, eval_doa, eval_rmse, eval_r2))
        writer.add_scalar('validation loss', eval_loss, epoch)
        writer.add_scalar('validation PCC', eval_pcc, epoch)
        writer.add_scalar('validation DOA', eval_doa, epoch)
        writer.add_scalar('validation RMSE', eval_rmse, epoch)
        writer.add_scalar('validation R2', eval_r2, epoch)
        return cur_value

    for epoch in tqdm(range(args.epochs), desc="Epochs:", leave=True):
        # Training step
        batches = trange(len(train_loader), desc="Batches", leave=True)
        for batch_cnt, batch in zip(batches, train_loader):
            net.train()
            x_train_fb_content, x_train_fb_question, x_train_fb_option, \
            x_train_fb_clens, x_train_fb_qlens, x_train_fb_olens, y_train_fb = batch

            optimizer.zero_grad()   # 如果不置零,Variable 的梯度在每次 backward 的时候都会累加
            logits, scores = net(x_train_fb_content, x_train_fb_question, x_train_fb_option)
            avg_batch_loss = criterion(scores, y_train_fb)
            avg_batch_loss.backward()
            optimizer.step()    # Parameter updating
            batches.set_description("Batches (Loss={:.4f})".format(avg_batch_loss.item()))
            logger.info('[epoch {0}, batch {1}] loss: {2:.4f}'.format(epoch + 1, batch_cnt, avg_batch_loss.item()))
            writer.add_scalar('training loss', avg_batch_loss, batch_cnt)
        # Evaluation step
        cur_value = eval_model(val_loader, epoch)
        saver.handle(cur_value, net, optimizer, epoch)
    writer.close()

    logger.info('Training Finished.')
Example #10
0
def train_rcnn():
    """Training RCNN model."""

    # Load sentences, labels, and training parameters
    logger.info("✔︎ Loading data...")

    logger.info("✔︎ Training data processing...")
    train_data = dh.load_data_and_labels(FLAGS.training_data_file, FLAGS.num_classes,
                                         FLAGS.embedding_dim, data_aug_flag=False)

    logger.info("✔︎ Validation data processing...")
    val_data = dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.num_classes,
                                       FLAGS.embedding_dim, data_aug_flag=False)

    logger.info("Recommended padding Sequence length is: {0}".format(FLAGS.pad_seq_len))

    logger.info("✔︎ Training data padding...")
    x_train, y_train = dh.pad_data(train_data, FLAGS.pad_seq_len)

    logger.info("✔︎ Validation data padding...")
    x_val, y_val = dh.pad_data(val_data, FLAGS.pad_seq_len)

    # Build vocabulary
    VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim)
    pretrained_word2vec_matrix = dh.load_word2vec_matrix(VOCAB_SIZE, FLAGS.embedding_dim)

    # Build a graph and rcnn object
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            rcnn = TextRCNN(
                sequence_length=FLAGS.pad_seq_len,
                num_classes=FLAGS.num_classes,
                vocab_size=VOCAB_SIZE,
                lstm_hidden_size=FLAGS.lstm_hidden_size,
                fc_hidden_size=FLAGS.fc_hidden_size,
                embedding_size=FLAGS.embedding_dim,
                embedding_type=FLAGS.embedding_type,
                filter_sizes=list(map(int, FLAGS.filter_sizes.split(','))),
                num_filters=FLAGS.num_filters,
                l2_reg_lambda=FLAGS.l2_reg_lambda,
                pretrained_embedding=pretrained_word2vec_matrix)

            # Define training procedure
            with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                learning_rate = tf.train.exponential_decay(learning_rate=FLAGS.learning_rate,
                                                           global_step=rcnn.global_step, decay_steps=FLAGS.decay_steps,
                                                           decay_rate=FLAGS.decay_rate, staircase=True)
                optimizer = tf.train.AdamOptimizer(learning_rate)
                grads, vars = zip(*optimizer.compute_gradients(rcnn.loss))
                grads, _ = tf.clip_by_global_norm(grads, clip_norm=FLAGS.norm_ratio)
                train_op = optimizer.apply_gradients(zip(grads, vars), global_step=rcnn.global_step, name="train_op")

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in zip(grads, vars):
                if g is not None:
                    grad_hist_summary = tf.summary.histogram("{0}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar("{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            if FLAGS.train_or_restore == 'R':
                MODEL = input("☛ Please input the checkpoints model you want to restore, "
                              "it should be like(1490175368): ")  # The model you want to restore

                while not (MODEL.isdigit() and len(MODEL) == 10):
                    MODEL = input("✘ The format of your input is illegal, please re-input: ")
                logger.info("✔︎ The format of your input is legal, now loading to next step...")
                out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", MODEL))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))
            else:
                timestamp = str(int(time.time()))
                out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))

            checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
            best_checkpoint_dir = os.path.abspath(os.path.join(out_dir, "bestcheckpoints"))

            # Summaries for loss
            loss_summary = tf.summary.scalar("loss", rcnn.loss)

            # Train summaries
            train_summary_op = tf.summary.merge([loss_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

            # Validation summaries
            validation_summary_op = tf.summary.merge([loss_summary])
            validation_summary_dir = os.path.join(out_dir, "summaries", "validation")
            validation_summary_writer = tf.summary.FileWriter(validation_summary_dir, sess.graph)

            saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
            best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir, num_to_keep=3, maximize=True)

            if FLAGS.train_or_restore == 'R':
                # Load rcnn model
                logger.info("✔︎ Loading model...")
                checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
                logger.info(checkpoint_file)

                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
            else:
                if not os.path.exists(checkpoint_dir):
                    os.makedirs(checkpoint_dir)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

                # Embedding visualization config
                config = projector.ProjectorConfig()
                embedding_conf = config.embeddings.add()
                embedding_conf.tensor_name = "embedding"
                embedding_conf.metadata_path = FLAGS.metadata_file

                projector.visualize_embeddings(train_summary_writer, config)
                projector.visualize_embeddings(validation_summary_writer, config)

                # Save the embedding visualization
                saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))

            current_step = sess.run(rcnn.global_step)

            def train_step(x_batch, y_batch):
                """A single training step"""
                feed_dict = {
                    rcnn.input_x: x_batch,
                    rcnn.input_y: y_batch,
                    rcnn.dropout_keep_prob: FLAGS.dropout_keep_prob,
                    rcnn.is_training: True
                }
                _, step, summaries, loss = sess.run(
                    [train_op, rcnn.global_step, train_summary_op, rcnn.loss], feed_dict)
                logger.info("step {0}: loss {1:g}".format(step, loss))
                train_summary_writer.add_summary(summaries, step)

            def validation_step(x_val, y_val, writer=None):
                """Evaluates model on a validation set"""
                batches_validation = dh.batch_iter(list(zip(x_val, y_val)), FLAGS.batch_size, 1)

                # Predict classes by threshold or topk ('ts': threshold; 'tk': topk)
                eval_counter, eval_loss = 0, 0.0

                eval_pre_tk = [0.0] * FLAGS.top_num
                eval_rec_tk = [0.0] * FLAGS.top_num
                eval_F_tk = [0.0] * FLAGS.top_num

                true_onehot_labels = []
                predicted_onehot_scores = []
                predicted_onehot_labels_ts = []
                predicted_onehot_labels_tk = [[] for _ in range(FLAGS.top_num)]

                for batch_validation in batches_validation:
                    x_batch_val, y_batch_val = zip(*batch_validation)
                    feed_dict = {
                        rcnn.input_x: x_batch_val,
                        rcnn.input_y: y_batch_val,
                        rcnn.dropout_keep_prob: 1.0,
                        rcnn.is_training: False
                    }
                    step, summaries, scores, cur_loss = sess.run(
                        [rcnn.global_step, validation_summary_op, rcnn.scores, rcnn.loss], feed_dict)

                    # Prepare for calculating metrics
                    for i in y_batch_val:
                        true_onehot_labels.append(i)
                    for j in scores:
                        predicted_onehot_scores.append(j)

                    # Predict by threshold
                    batch_predicted_onehot_labels_ts = \
                        dh.get_onehot_label_threshold(scores=scores, threshold=FLAGS.threshold)

                    for k in batch_predicted_onehot_labels_ts:
                        predicted_onehot_labels_ts.append(k)

                    # Predict by topK
                    for top_num in range(FLAGS.top_num):
                        batch_predicted_onehot_labels_tk = dh.get_onehot_label_topk(scores=scores, top_num=top_num+1)

                        for i in batch_predicted_onehot_labels_tk:
                            predicted_onehot_labels_tk[top_num].append(i)

                    eval_loss = eval_loss + cur_loss
                    eval_counter = eval_counter + 1

                    if writer:
                        writer.add_summary(summaries, step)

                eval_loss = float(eval_loss / eval_counter)

                # Calculate Precision & Recall & F1 (threshold & topK)
                eval_pre_ts = precision_score(y_true=np.array(true_onehot_labels),
                                              y_pred=np.array(predicted_onehot_labels_ts), average='micro')
                eval_rec_ts = recall_score(y_true=np.array(true_onehot_labels),
                                           y_pred=np.array(predicted_onehot_labels_ts), average='micro')
                eval_F_ts = f1_score(y_true=np.array(true_onehot_labels),
                                     y_pred=np.array(predicted_onehot_labels_ts), average='micro')

                for top_num in range(FLAGS.top_num):
                    eval_pre_tk[top_num] = precision_score(y_true=np.array(true_onehot_labels),
                                                           y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                                                           average='micro')
                    eval_rec_tk[top_num] = recall_score(y_true=np.array(true_onehot_labels),
                                                        y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                                                        average='micro')
                    eval_F_tk[top_num] = f1_score(y_true=np.array(true_onehot_labels),
                                                  y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                                                  average='micro')

                # Calculate the average AUC
                eval_auc = roc_auc_score(y_true=np.array(true_onehot_labels),
                                         y_score=np.array(predicted_onehot_scores), average='micro')
                # Calculate the average PR
                eval_prc = average_precision_score(y_true=np.array(true_onehot_labels),
                                                   y_score=np.array(predicted_onehot_scores), average='micro')

                return eval_loss, eval_auc, eval_prc, eval_rec_ts, eval_pre_ts, eval_F_ts, \
                       eval_rec_tk, eval_pre_tk, eval_F_tk

            # Generate batches
            batches_train = dh.batch_iter(
                list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)

            num_batches_per_epoch = int((len(x_train) - 1) / FLAGS.batch_size) + 1

            # Training loop. For each batch...
            for batch_train in batches_train:
                x_batch_train, y_batch_train = zip(*batch_train)
                train_step(x_batch_train, y_batch_train)
                current_step = tf.train.global_step(sess, rcnn.global_step)

                if current_step % FLAGS.evaluate_every == 0:
                    logger.info("\nEvaluation:")
                    eval_loss, eval_auc, eval_prc, \
                    eval_rec_ts, eval_pre_ts, eval_F_ts, eval_rec_tk, eval_pre_tk, eval_F_tk = \
                        validation_step(x_val, y_val, writer=validation_summary_writer)

                    logger.info("All Validation set: Loss {0:g} | AUC {1:g} | AUPRC {2:g}"
                                .format(eval_loss, eval_auc, eval_prc))

                    # Predict by threshold
                    logger.info("☛ Predict by threshold: Precision {0:g}, Recall {1:g}, F {2:g}"
                                .format(eval_pre_ts, eval_rec_ts, eval_F_ts))

                    # Predict by topK
                    logger.info("☛ Predict by topK:")
                    for top_num in range(FLAGS.top_num):
                        logger.info("Top{0}: Precision {1:g}, Recall {2:g}, F {3:g}"
                                    .format(top_num+1, eval_pre_tk[top_num], eval_rec_tk[top_num], eval_F_tk[top_num]))
                    best_saver.handle(eval_prc, sess, current_step)
                if current_step % FLAGS.checkpoint_every == 0:
                    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
                    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
                    logger.info("✔︎ Saved model checkpoint to {0}\n".format(path))
                if current_step % num_batches_per_epoch == 0:
                    current_epoch = current_step // num_batches_per_epoch
                    logger.info("✔︎ Epoch {0} has finished!".format(current_epoch))

    logger.info("✔︎ Done.")
def test_harnn():
    """Test HARNN model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load word2vec model
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args, args.test_file, word2idx)

    # Load harnn model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR,
                                                 select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y_first = graph.get_operation_by_name(
                "input_y_first").outputs[0]
            input_y_second = graph.get_operation_by_name(
                "input_y_second").outputs[0]
            input_y_third = graph.get_operation_by_name(
                "input_y_third").outputs[0]
            input_y_fourth = graph.get_operation_by_name(
                "input_y_fourth").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            alpha = graph.get_operation_by_name("alpha").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            first_scores = graph.get_operation_by_name(
                "first-output/scores").outputs[0]
            second_scores = graph.get_operation_by_name(
                "second-output/scores").outputs[0]
            third_scores = graph.get_operation_by_name(
                "third-output/scores").outputs[0]
            fourth_scores = graph.get_operation_by_name(
                "fourth-output/scores").outputs[0]
            scores = graph.get_operation_by_name("output/scores").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "first-output/scores|second-output/scores|third-output/scores|fourth-output/scores|output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-harnn-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(create_input_data(test_data)),
                                    args.batch_size,
                                    1,
                                    shuffle=False)

            # Collect the predictions here
            true_labels = []
            predicted_labels = []
            predicted_scores = []

            # Collect for calculating metrics
            true_onehot_labels = [[], [], [], [], []]
            predicted_onehot_scores = [[], [], [], [], []]
            predicted_onehot_labels = [[], [], [], [], []]

            for batch_test in batches:
                x, sec, subsec, group, subgroup, y_onehot, y = zip(*batch_test)

                y_batch_test_list = [y_onehot, sec, subsec, group, subgroup]

                feed_dict = {
                    input_x: x,
                    input_y_first: sec,
                    input_y_second: subsec,
                    input_y_third: group,
                    input_y_fourth: subgroup,
                    input_y: y_onehot,
                    dropout_keep_prob: 1.0,
                    alpha: args.alpha,
                    is_training: False
                }
                batch_global_scores, batch_first_scores, batch_second_scores, batch_third_scores, batch_fourth_scores = \
                    sess.run([scores, first_scores, second_scores, third_scores, fourth_scores], feed_dict)

                batch_scores = [
                    batch_global_scores, batch_first_scores,
                    batch_second_scores, batch_third_scores,
                    batch_fourth_scores
                ]

                # Get the predicted labels by threshold
                batch_predicted_labels_ts, batch_predicted_scores_ts = \
                    dh.get_label_threshold(scores=batch_scores[0], threshold=args.threshold)

                # Add results to collection
                for labels in y:
                    true_labels.append(labels)
                for labels in batch_predicted_labels_ts:
                    predicted_labels.append(labels)
                for values in batch_predicted_scores_ts:
                    predicted_scores.append(values)

                for index in range(len(predicted_onehot_scores)):
                    for onehot_labels in y_batch_test_list[index]:
                        true_onehot_labels[index].append(onehot_labels)
                    for onehot_scores in batch_scores[index]:
                        predicted_onehot_scores[index].append(onehot_scores)
                    # Get one-hot prediction by threshold
                    predicted_onehot_labels_ts = \
                        dh.get_onehot_label_threshold(scores=batch_scores[index], threshold=args.threshold)
                    for onehot_labels in predicted_onehot_labels_ts:
                        predicted_onehot_labels[index].append(onehot_labels)

            # Calculate Precision & Recall & F1
            for index in range(len(predicted_onehot_scores)):
                test_pre = precision_score(
                    y_true=np.array(true_onehot_labels[index]),
                    y_pred=np.array(predicted_onehot_labels[index]),
                    average='micro')
                test_rec = recall_score(
                    y_true=np.array(true_onehot_labels[index]),
                    y_pred=np.array(predicted_onehot_labels[index]),
                    average='micro')
                test_F1 = f1_score(y_true=np.array(true_onehot_labels[index]),
                                   y_pred=np.array(
                                       predicted_onehot_labels[index]),
                                   average='micro')
                test_auc = roc_auc_score(
                    y_true=np.array(true_onehot_labels[index]),
                    y_score=np.array(predicted_onehot_scores[index]),
                    average='micro')
                test_prc = average_precision_score(
                    y_true=np.array(true_onehot_labels[index]),
                    y_score=np.array(predicted_onehot_scores[index]),
                    average="micro")
                if index == 0:
                    logger.info(
                        "[Global] Predict by threshold: Precision {0:g}, Recall {1:g}, "
                        "F1 {2:g}, AUC {3:g}, AUPRC {4:g}".format(
                            test_pre, test_rec, test_F1, test_auc, test_prc))
                else:
                    logger.info(
                        "[Local] Predict by threshold in Level-{0}: Precision {1:g}, Recall {2:g}, "
                        "F1 {3:g}, AUPRC {4:g}".format(index, test_pre,
                                                       test_rec, test_F1,
                                                       test_prc))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR +
                                      "/predictions.json",
                                      data_id=test_data['uniq_id'],
                                      true_labels=true_labels,
                                      predict_labels=predicted_labels,
                                      predict_scores=predicted_scores)
    logger.info("All Done.")
Example #12
0
def train_tarnn():
    """Training TARNN model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load sentences, labels, and training parameters
    logger.info("Loading data...")
    logger.info("Data processing...")
    train_data = dh.load_data_and_labels(args.train_file, args.word2vec_file, data_aug_flag=False)
    val_data = dh.load_data_and_labels(args.validation_file, args.word2vec_file, data_aug_flag=False)

    logger.info("Data padding...")
    x_train_content, x_train_question, x_train_option, y_train = dh.pad_data(train_data, args.pad_seq_len)
    x_val_content, x_val_question, x_val_option, y_val = dh.pad_data(val_data, args.pad_seq_len)

    # Build vocabulary
    VOCAB_SIZE, EMBEDDING_SIZE, pretrained_word2vec_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Build a graph and tarnn object
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            tarnn = TextTARNN(
                sequence_length=args.pad_seq_len,
                vocab_size=VOCAB_SIZE,
                embedding_type=args.embedding_type,
                embedding_size=EMBEDDING_SIZE,
                rnn_hidden_size=args.rnn_dim,
                rnn_type=args.rnn_type,
                rnn_layers=args.rnn_layers,
                attention_type=args.attention_type,
                fc_hidden_size=args.fc_dim,
                l2_reg_lambda=args.l2_lambda,
                pretrained_embedding=pretrained_word2vec_matrix)

            # Define training procedure
            with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                learning_rate = tf.train.exponential_decay(learning_rate=args.learning_rate,
                                                           global_step=tarnn.global_step, decay_steps=args.decay_steps,
                                                           decay_rate=args.decay_rate, staircase=True)
                optimizer = tf.train.AdamOptimizer(learning_rate)
                grads, vars = zip(*optimizer.compute_gradients(tarnn.loss))
                grads, _ = tf.clip_by_global_norm(grads, clip_norm=args.norm_ratio)
                train_op = optimizer.apply_gradients(zip(grads, vars), global_step=tarnn.global_step, name="train_op")

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in zip(grads, vars):
                if g is not None:
                    grad_hist_summary = tf.summary.histogram("{0}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar("{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            out_dir = dh.get_out_dir(OPTION, logger)
            checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
            best_checkpoint_dir = os.path.abspath(os.path.join(out_dir, "bestcheckpoints"))

            # Summaries for loss
            loss_summary = tf.summary.scalar("loss", tarnn.loss)

            # Train summaries
            train_summary_op = tf.summary.merge([loss_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

            # Validation summaries
            validation_summary_op = tf.summary.merge([loss_summary])
            validation_summary_dir = os.path.join(out_dir, "summaries", "validation")
            validation_summary_writer = tf.summary.FileWriter(validation_summary_dir, sess.graph)

            saver = tf.train.Saver(tf.global_variables(), max_to_keep=args.num_checkpoints)
            best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir, num_to_keep=3, maximize=False)

            if OPTION == 'R':
                # Load tarnn model
                logger.info("Loading model...")
                checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
                logger.info(checkpoint_file)

                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
            if OPTION == 'T':
                if not os.path.exists(checkpoint_dir):
                    os.makedirs(checkpoint_dir)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

                # Embedding visualization config
                config = projector.ProjectorConfig()
                embedding_conf = config.embeddings.add()
                embedding_conf.tensor_name = "embedding"
                embedding_conf.metadata_path = args.metadata_file

                projector.visualize_embeddings(train_summary_writer, config)
                projector.visualize_embeddings(validation_summary_writer, config)

                # Save the embedding visualization
                saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))

            current_step = sess.run(tarnn.global_step)

            def train_step(x_batch_content, x_batch_question, x_batch_option, y_batch):
                """A single training step"""
                feed_dict = {
                    tarnn.input_x_content: x_batch_content,
                    tarnn.input_x_question: x_batch_question,
                    tarnn.input_x_option: x_batch_option,
                    tarnn.input_y: y_batch,
                    tarnn.dropout_keep_prob: args.dropout_rate,
                    tarnn.is_training: True
                }
                _, step, summaries, loss = sess.run(
                    [train_op, tarnn.global_step, train_summary_op, tarnn.loss], feed_dict)
                logger.info("step {0}: loss {1:g}".format(step, loss))
                train_summary_writer.add_summary(summaries, step)

            def validation_step(x_val_content, x_val_question, x_val_option, y_val, writer=None):
                """Evaluates model on a validation set"""
                batches_validation = dh.batch_iter(list(zip(x_val_content, x_val_question, x_val_option, y_val)),
                                                   args.batch_size, 1)

                eval_counter, eval_loss = 0, 0.0
                true_labels = []
                predicted_scores = []

                for batch_validation in batches_validation:
                    x_batch_content, x_batch_question, x_batch_option, y_batch = zip(*batch_validation)
                    feed_dict = {
                        tarnn.input_x_content: x_batch_content,
                        tarnn.input_x_question: x_batch_question,
                        tarnn.input_x_option: x_batch_option,
                        tarnn.input_y: y_batch,
                        tarnn.dropout_keep_prob: 1.0,
                        tarnn.is_training: False
                    }
                    step, summaries, scores, cur_loss = sess.run(
                        [tarnn.global_step, validation_summary_op, tarnn.scores, tarnn.loss], feed_dict)

                    # Prepare for calculating metrics
                    for i in y_batch:
                        true_labels.append(i)
                    for j in scores:
                        predicted_scores.append(j)

                    eval_loss = eval_loss + cur_loss
                    eval_counter = eval_counter + 1

                    if writer:
                        writer.add_summary(summaries, step)

                eval_loss = float(eval_loss / eval_counter)

                # Calculate PCC & DOA
                pcc, doa = dh.evaluation(true_labels, predicted_scores)
                # Calculate RMSE
                rmse = mean_squared_error(true_labels, predicted_scores) ** 0.5
                r2 = r2_score(true_labels, predicted_scores)

                return eval_loss, pcc, doa, rmse, r2

            # Generate batches
            batches_train = dh.batch_iter(list(zip(x_train_content, x_train_question, x_train_option, y_train)),
                                          args.batch_size, args.epochs)

            num_batches_per_epoch = int((len(y_train) - 1) / args.batch_size) + 1

            # Training loop. For each batch...
            for batch_train in batches_train:
                x_batch_train_content, x_batch_train_question, x_batch_train_option, y_batch_train = zip(*batch_train)
                train_step(x_batch_train_content, x_batch_train_question, x_batch_train_option, y_batch_train)
                current_step = tf.train.global_step(sess, tarnn.global_step)

                if current_step % args.evaluate_steps == 0:
                    logger.info("\nEvaluation:")
                    eval_loss, pcc, doa, rmse, r2 = validation_step(x_val_content, x_val_question, x_val_option, y_val,
                                                                    writer=validation_summary_writer)
                    logger.info("All Validation set: Loss {0:g} | PCC {1:g} | DOA {2:g} | RMSE {3:g} | R2 {4:g}"
                                .format(eval_loss, pcc, doa, rmse, r2))
                    best_saver.handle(rmse, sess, current_step)
                if current_step % args.checkpoint_steps == 0:
                    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
                    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
                    logger.info("Saved model checkpoint to {0}\n".format(path))
                if current_step % num_batches_per_epoch == 0:
                    current_epoch = current_step // num_batches_per_epoch
                    logger.info("Epoch {0} has finished!".format(current_epoch))

    logger.info("All Done.")
def visualize():
    """Visualize HARNN model."""

    # Load word2vec model
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args, args.test_file, word2idx)

    # Load harnn model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR,
                                                 select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y_first = graph.get_operation_by_name(
                "input_y_first").outputs[0]
            input_y_second = graph.get_operation_by_name(
                "input_y_second").outputs[0]
            input_y_third = graph.get_operation_by_name(
                "input_y_third").outputs[0]
            input_y_fourth = graph.get_operation_by_name(
                "input_y_fourth").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            alpha = graph.get_operation_by_name("alpha").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            first_visual = graph.get_operation_by_name(
                "first-output/visual").outputs[0]
            second_visual = graph.get_operation_by_name(
                "second-output/visual").outputs[0]
            third_visual = graph.get_operation_by_name(
                "third-output/visual").outputs[0]
            fourth_visual = graph.get_operation_by_name(
                "fourth-output/visual").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "first-output/visual|second-output/visual|third-output/visual|fourth-output/visual|output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-harnn-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(create_input_data(test_data)),
                                    args.batch_size,
                                    1,
                                    shuffle=False)

            for batch_id, batch_test in enumerate(batches):
                x, x_content, sec, subsec, group, subgroup, y_onehot = zip(
                    *batch_test)

                feed_dict = {
                    input_x: x,
                    input_y_first: sec,
                    input_y_second: subsec,
                    input_y_third: group,
                    input_y_fourth: subgroup,
                    input_y: y_onehot,
                    dropout_keep_prob: 1.0,
                    alpha: args.alpha,
                    is_training: False
                }
                batch_first_visual, batch_second_visual, batch_third_visual, batch_fourth_visual = \
                    sess.run([first_visual, second_visual, third_visual, fourth_visual], feed_dict)

                batch_visual = [
                    batch_first_visual, batch_second_visual,
                    batch_third_visual, batch_fourth_visual
                ]

                seq_len = len(x_content[0])
                pad_len = len(batch_first_visual[0])
                length = (pad_len if seq_len >= pad_len else seq_len)
                visual_list = []

                for visual in batch_visual:
                    visual_list.append(
                        normalization(visual[0].tolist(), length))

                create_visual_file(batch_id, x_content, visual_list, seq_len)
    logger.info("Done.")
def train_hmidp():
    """Training hmdip model."""

    # Load sentences, labels, and training parameters
    logger.info("✔︎ Loading data...")

    logger.info("✔︎ Training data processing...")
    train_data = dh.load_data_and_labels(FLAGS.training_data_file,
                                         FLAGS.embedding_dim,
                                         data_aug_flag=False)

    logger.info("✔︎ Validation data processing...")
    val_data = dh.load_data_and_labels(FLAGS.validation_data_file,
                                       FLAGS.embedding_dim,
                                       data_aug_flag=False)

    logger.info("✔︎ Training data padding...")
    x_train_content, x_train_question, x_train_option, y_train = dh.pad_data(
        train_data, FLAGS.pad_seq_len)

    logger.info("✔︎ Validation data padding...")
    x_val_content, x_val_question, x_val_option, y_val = dh.pad_data(
        val_data, FLAGS.pad_seq_len)

    # Build vocabulary
    VOCAB_SIZE, pretrained_word2vec_matrix = dh.load_word2vec_matrix(
        FLAGS.embedding_dim)

    # Build a graph and hmidp object
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            hmidp = TextHMIDP(
                sequence_length=list(map(int, FLAGS.pad_seq_len.split(','))),
                vocab_size=VOCAB_SIZE,
                fc_hidden_size=FLAGS.fc_hidden_size,
                lstm_hidden_size=FLAGS.lstm_hidden_size,
                embedding_size=FLAGS.embedding_dim,
                embedding_type=FLAGS.embedding_type,
                filter_sizes=list(map(int, FLAGS.filter_sizes.split(','))),
                num_filters=list(map(int, FLAGS.num_filters.split(','))),
                pooling_size=FLAGS.pooling_size,
                l2_reg_lambda=FLAGS.l2_reg_lambda,
                pretrained_embedding=pretrained_word2vec_matrix)

            # Define training procedure
            with tf.control_dependencies(
                    tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                learning_rate = tf.train.exponential_decay(
                    learning_rate=FLAGS.learning_rate,
                    global_step=hmidp.global_step,
                    decay_steps=FLAGS.decay_steps,
                    decay_rate=FLAGS.decay_rate,
                    staircase=True)
                optimizer = tf.train.AdamOptimizer(learning_rate)
                grads, vars = zip(*optimizer.compute_gradients(hmidp.loss))
                grads, _ = tf.clip_by_global_norm(grads,
                                                  clip_norm=FLAGS.norm_ratio)
                train_op = optimizer.apply_gradients(
                    zip(grads, vars),
                    global_step=hmidp.global_step,
                    name="train_op")

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in zip(grads, vars):
                if g is not None:
                    grad_hist_summary = tf.summary.histogram(
                        "{0}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar(
                        "{0}/grad/sparsity".format(v.name),
                        tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            if FLAGS.train_or_restore == 'R':
                MODEL = input(
                    "☛ Please input the checkpoints model you want to restore, "
                    "it should be like(1490175368): "
                )  # The model you want to restore

                while not (MODEL.isdigit() and len(MODEL) == 10):
                    MODEL = input(
                        "✘ The format of your input is illegal, please re-input: "
                    )
                logger.info(
                    "✔︎ The format of your input is legal, now loading to next step..."
                )
                out_dir = os.path.abspath(
                    os.path.join(os.path.curdir, "runs", MODEL))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))
            else:
                timestamp = str(int(time.time()))
                out_dir = os.path.abspath(
                    os.path.join(os.path.curdir, "runs", timestamp))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))

            checkpoint_dir = os.path.abspath(
                os.path.join(out_dir, "checkpoints"))
            best_checkpoint_dir = os.path.abspath(
                os.path.join(out_dir, "bestcheckpoints"))

            # Summaries for loss
            loss_summary = tf.summary.scalar("loss", hmidp.loss)

            # Train summaries
            train_summary_op = tf.summary.merge(
                [loss_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(
                train_summary_dir, sess.graph)

            # Validation summaries
            validation_summary_op = tf.summary.merge([loss_summary])
            validation_summary_dir = os.path.join(out_dir, "summaries",
                                                  "validation")
            validation_summary_writer = tf.summary.FileWriter(
                validation_summary_dir, sess.graph)

            saver = tf.train.Saver(tf.global_variables(),
                                   max_to_keep=FLAGS.num_checkpoints)
            best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir,
                                                num_to_keep=3,
                                                maximize=False)

            if FLAGS.train_or_restore == 'R':
                # Load hmidp model
                logger.info("✔︎ Loading model...")
                checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
                logger.info(checkpoint_file)

                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph(
                    "{0}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
            else:
                if not os.path.exists(checkpoint_dir):
                    os.makedirs(checkpoint_dir)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

                # Embedding visualization config
                config = projector.ProjectorConfig()
                embedding_conf = config.embeddings.add()
                embedding_conf.tensor_name = "embedding"
                embedding_conf.metadata_path = FLAGS.metadata_file

                projector.visualize_embeddings(train_summary_writer, config)
                projector.visualize_embeddings(validation_summary_writer,
                                               config)

                # Save the embedding visualization
                saver.save(
                    sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))

            current_step = sess.run(hmidp.global_step)

            def train_step(x_batch_content, x_batch_question, x_batch_option,
                           y_batch):
                """A single training step"""
                feed_dict = {
                    hmidp.input_x_content: x_batch_content,
                    hmidp.input_x_question: x_batch_question,
                    hmidp.input_x_option: x_batch_option,
                    hmidp.input_y: y_batch,
                    hmidp.dropout_keep_prob: FLAGS.dropout_keep_prob,
                    hmidp.is_training: True
                }
                _, step, summaries, loss = sess.run([
                    train_op, hmidp.global_step, train_summary_op, hmidp.loss
                ], feed_dict)
                logger.info("step {0}: loss {1:g}".format(step, loss))
                train_summary_writer.add_summary(summaries, step)

            def validation_step(x_val_content,
                                x_val_question,
                                x_val_option,
                                y_val,
                                writer=None):
                """Evaluates model on a validation set"""
                batches_validation = dh.batch_iter(
                    list(
                        zip(x_val_content, x_val_question, x_val_option,
                            y_val)), FLAGS.batch_size, 1)

                eval_counter, eval_loss = 0, 0.0

                true_labels = []
                predicted_scores = []

                for batch_validation in batches_validation:
                    x_batch_content, x_batch_question, x_batch_option, y_batch = zip(
                        *batch_validation)
                    feed_dict = {
                        hmidp.input_x_content: x_batch_content,
                        hmidp.input_x_question: x_batch_question,
                        hmidp.input_x_option: x_batch_option,
                        hmidp.input_y: y_batch,
                        hmidp.dropout_keep_prob: 1.0,
                        hmidp.is_training: False
                    }
                    step, summaries, scores, cur_loss = sess.run([
                        hmidp.global_step, validation_summary_op, hmidp.scores,
                        hmidp.loss
                    ], feed_dict)

                    # Prepare for calculating metrics
                    for i in y_batch:
                        true_labels.append(i)
                    for j in scores:
                        predicted_scores.append(j)

                    eval_loss = eval_loss + cur_loss
                    eval_counter = eval_counter + 1

                    if writer:
                        writer.add_summary(summaries, step)

                eval_loss = float(eval_loss / eval_counter)

                # Calculate PCC & DOA
                pcc, doa = dh.evaluation(true_labels, predicted_scores)
                # Calculate RMSE
                rmse = mean_squared_error(true_labels, predicted_scores)**0.5

                return eval_loss, pcc, doa, rmse

            # Generate batches
            batches_train = dh.batch_iter(
                list(
                    zip(x_train_content, x_train_question, x_train_option,
                        y_train)), FLAGS.batch_size, FLAGS.num_epochs)

            num_batches_per_epoch = int(
                (len(y_train) - 1) / FLAGS.batch_size) + 1

            # Training loop. For each batch...
            for batch_train in batches_train:
                x_batch_train_content, x_batch_train_question, x_batch_train_option, y_batch_train = zip(
                    *batch_train)
                train_step(x_batch_train_content, x_batch_train_question,
                           x_batch_train_option, y_batch_train)
                current_step = tf.train.global_step(sess, hmidp.global_step)

                if current_step % FLAGS.evaluate_every == 0:
                    logger.info("\nEvaluation:")
                    eval_loss, pcc, doa, rmse = validation_step(
                        x_val_content,
                        x_val_question,
                        x_val_option,
                        y_val,
                        writer=validation_summary_writer)
                    logger.info(
                        "All Validation set: Loss {0:g} | PCC {1:g} | DOA {2:g} | RMSE {3:g}"
                        .format(eval_loss, pcc, doa, rmse))
                    best_saver.handle(rmse, sess, current_step)
                if current_step % FLAGS.checkpoint_every == 0:
                    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
                    path = saver.save(sess,
                                      checkpoint_prefix,
                                      global_step=current_step)
                    logger.info(
                        "✔︎ Saved model checkpoint to {0}\n".format(path))
                if current_step % num_batches_per_epoch == 0:
                    current_epoch = current_step // num_batches_per_epoch
                    logger.info(
                        "✔︎ Epoch {0} has finished!".format(current_epoch))

    logger.info("✔︎ Done.")
def train_han():
    """Training HAN model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load sentences, labels, and training parameters
    logger.info("Loading data...")
    logger.info("Data processing...")
    train_data = dh.load_data_and_labels(args.train_file, args.num_classes, args.word2vec_file, data_aug_flag=False)
    val_data = dh.load_data_and_labels(args.validation_file, args.num_classes, args.word2vec_file, data_aug_flag=False)

    logger.info("Data padding...")
    x_train, y_train = dh.pad_data(train_data, args.pad_seq_len)
    x_val, y_val = dh.pad_data(val_data, args.pad_seq_len)

    # Build vocabulary
    VOCAB_SIZE, EMBEDDING_SIZE, pretrained_word2vec_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Build a graph and han object
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            han = TextHAN(
                sequence_length=args.pad_seq_len,
                vocab_size=VOCAB_SIZE,
                embedding_type=args.embedding_type,
                embedding_size=EMBEDDING_SIZE,
                lstm_hidden_size=args.lstm_dim,
                fc_hidden_size=args.fc_dim,
                num_classes=args.num_classes,
                l2_reg_lambda=args.l2_lambda,
                pretrained_embedding=pretrained_word2vec_matrix)

            # Define training procedure
            with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                learning_rate = tf.train.exponential_decay(learning_rate=args.learning_rate,
                                                           global_step=han.global_step, decay_steps=args.decay_steps,
                                                           decay_rate=args.decay_rate, staircase=True)
                optimizer = tf.train.AdamOptimizer(learning_rate)
                grads, vars = zip(*optimizer.compute_gradients(han.loss))
                grads, _ = tf.clip_by_global_norm(grads, clip_norm=args.norm_ratio)
                train_op = optimizer.apply_gradients(zip(grads, vars), global_step=han.global_step, name="train_op")

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in zip(grads, vars):
                if g is not None:
                    grad_hist_summary = tf.summary.histogram("{0}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar("{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            out_dir = dh.get_out_dir(OPTION, logger)
            checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
            best_checkpoint_dir = os.path.abspath(os.path.join(out_dir, "bestcheckpoints"))

            # Summaries for loss
            loss_summary = tf.summary.scalar("loss", han.loss)

            # Train summaries
            train_summary_op = tf.summary.merge([loss_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

            # Validation summaries
            validation_summary_op = tf.summary.merge([loss_summary])
            validation_summary_dir = os.path.join(out_dir, "summaries", "validation")
            validation_summary_writer = tf.summary.FileWriter(validation_summary_dir, sess.graph)

            saver = tf.train.Saver(tf.global_variables(), max_to_keep=args.num_checkpoints)
            best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir, num_to_keep=3, maximize=True)

            if OPTION == 'R':
                # Load han model
                logger.info("Loading model...")
                checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
                logger.info(checkpoint_file)

                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
            if OPTION == 'T':
                if not os.path.exists(checkpoint_dir):
                    os.makedirs(checkpoint_dir)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

                # Embedding visualization config
                config = projector.ProjectorConfig()
                embedding_conf = config.embeddings.add()
                embedding_conf.tensor_name = "embedding"
                embedding_conf.metadata_path = args.metadata_file

                projector.visualize_embeddings(train_summary_writer, config)
                projector.visualize_embeddings(validation_summary_writer, config)

                # Save the embedding visualization
                saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))

            current_step = sess.run(han.global_step)

            def train_step(x_batch, y_batch):
                """A single training step"""
                feed_dict = {
                    han.input_x: x_batch,
                    han.input_y: y_batch,
                    han.dropout_keep_prob: args.dropout_rate,
                    han.is_training: True
                }
                _, step, summaries, loss = sess.run(
                    [train_op, han.global_step, train_summary_op, han.loss], feed_dict)
                logger.info("step {0}: loss {1:g}".format(step, loss))
                train_summary_writer.add_summary(summaries, step)

            def validation_step(x_val, y_val, writer=None):
                """Evaluates model on a validation set"""
                batches_validation = dh.batch_iter(list(zip(x_val, y_val)), args.batch_size, 1)

                # Predict classes by threshold or topk ('ts': threshold; 'tk': topk)
                eval_counter, eval_loss = 0, 0.0

                eval_pre_tk = [0.0] * args.topK
                eval_rec_tk = [0.0] * args.topK
                eval_F1_tk = [0.0] * args.topK

                true_onehot_labels = []
                predicted_onehot_scores = []
                predicted_onehot_labels_ts = []
                predicted_onehot_labels_tk = [[] for _ in range(args.topK)]

                for batch_validation in batches_validation:
                    x_batch_val, y_batch_val = zip(*batch_validation)
                    feed_dict = {
                        han.input_x: x_batch_val,
                        han.input_y: y_batch_val,
                        han.dropout_keep_prob: 1.0,
                        han.is_training: False
                    }
                    step, summaries, scores, cur_loss = sess.run(
                        [han.global_step, validation_summary_op, han.scores, han.loss], feed_dict)

                    # Prepare for calculating metrics
                    for i in y_batch_val:
                        true_onehot_labels.append(i)
                    for j in scores:
                        predicted_onehot_scores.append(j)

                    # Predict by threshold
                    batch_predicted_onehot_labels_ts = \
                        dh.get_onehot_label_threshold(scores=scores, threshold=args.threshold)

                    for k in batch_predicted_onehot_labels_ts:
                        predicted_onehot_labels_ts.append(k)

                    # Predict by topK
                    for top_num in range(args.topK):
                        batch_predicted_onehot_labels_tk = dh.get_onehot_label_topk(scores=scores, top_num=top_num+1)

                        for i in batch_predicted_onehot_labels_tk:
                            predicted_onehot_labels_tk[top_num].append(i)

                    eval_loss = eval_loss + cur_loss
                    eval_counter = eval_counter + 1

                    if writer:
                        writer.add_summary(summaries, step)

                eval_loss = float(eval_loss / eval_counter)

                # Calculate Precision & Recall & F1
                eval_pre_ts = precision_score(y_true=np.array(true_onehot_labels),
                                              y_pred=np.array(predicted_onehot_labels_ts), average='micro')
                eval_rec_ts = recall_score(y_true=np.array(true_onehot_labels),
                                           y_pred=np.array(predicted_onehot_labels_ts), average='micro')
                eval_F1_ts = f1_score(y_true=np.array(true_onehot_labels),
                                      y_pred=np.array(predicted_onehot_labels_ts), average='micro')

                for top_num in range(args.topK):
                    eval_pre_tk[top_num] = precision_score(y_true=np.array(true_onehot_labels),
                                                           y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                                                           average='micro')
                    eval_rec_tk[top_num] = recall_score(y_true=np.array(true_onehot_labels),
                                                        y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                                                        average='micro')
                    eval_F1_tk[top_num] = f1_score(y_true=np.array(true_onehot_labels),
                                                   y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                                                   average='micro')

                # Calculate the average AUC
                eval_auc = roc_auc_score(y_true=np.array(true_onehot_labels),
                                         y_score=np.array(predicted_onehot_scores), average='micro')
                # Calculate the average PR
                eval_prc = average_precision_score(y_true=np.array(true_onehot_labels),
                                                   y_score=np.array(predicted_onehot_scores), average='micro')

                return eval_loss, eval_auc, eval_prc, eval_pre_ts, eval_rec_ts, eval_F1_ts, \
                       eval_pre_tk, eval_rec_tk, eval_F1_tk

            # Generate batches
            batches_train = dh.batch_iter(
                list(zip(x_train, y_train)), args.batch_size, args.epochs)

            num_batches_per_epoch = int((len(x_train) - 1) / args.batch_size) + 1

            # Training loop. For each batch...
            for batch_train in batches_train:
                x_batch_train, y_batch_train = zip(*batch_train)
                train_step(x_batch_train, y_batch_train)
                current_step = tf.train.global_step(sess, han.global_step)

                if current_step % args.evaluate_steps == 0:
                    logger.info("\nEvaluation:")
                    eval_loss, eval_auc, eval_prc, \
                    eval_pre_ts, eval_rec_ts, eval_F1_ts, eval_pre_tk, eval_rec_tk, eval_F1_tk = \
                        validation_step(x_val, y_val, writer=validation_summary_writer)

                    logger.info("All Validation set: Loss {0:g} | AUC {1:g} | AUPRC {2:g}"
                                .format(eval_loss, eval_auc, eval_prc))

                    # Predict by threshold
                    logger.info("Predict by threshold: Precision {0:g}, Recall {1:g}, F1 {2:g}"
                                .format(eval_pre_ts, eval_rec_ts, eval_F1_ts))

                    # Predict by topK
                    logger.info("Predict by topK:")
                    for top_num in range(args.topK):
                        logger.info("Top{0}: Precision {1:g}, Recall {2:g}, F1 {3:g}"
                                    .format(top_num+1, eval_pre_tk[top_num], eval_rec_tk[top_num], eval_F1_tk[top_num]))
                    best_saver.handle(eval_prc, sess, current_step)
                if current_step % args.checkpoint_steps == 0:
                    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
                    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
                    logger.info("Saved model checkpoint to {0}\n".format(path))
                if current_step % num_batches_per_epoch == 0:
                    current_epoch = current_step // num_batches_per_epoch
                    logger.info("Epoch {0} has finished!".format(current_epoch))

    logger.info("All Done.")
Example #16
0
def test_cnn():
    """Test CNN model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load word2vec model
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args, args.test_file, word2idx)

    # Load cnn model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR, select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x_front = graph.get_operation_by_name("input_x_front").outputs[0]
            input_x_behind = graph.get_operation_by_name("input_x_behind").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            scores = graph.get_operation_by_name("output/topKPreds").outputs[0]
            predictions = graph.get_operation_by_name("output/topKPreds").outputs[1]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "output/topKPreds"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def,
                                                                            output_node_names.split("|"))
            tf.train.write_graph(output_graph_def, "graph", "graph-cnn-{0}.pb".format(MODEL), as_text=False)

            # Generate batches for one epoch
            batches_test = dh.batch_iter(list(create_input_data(test_data)), args.batch_size, 1, shuffle=False)

            # Collect the predictions here
            test_counter, test_loss = 0, 0.0
            true_labels = []
            predicted_labels = []
            predicted_scores = []

            for batch_test in batches_test:
                x_f, x_b, y_onehot = zip(*batch_test)
                feed_dict = {
                    input_x_front: x_f,
                    input_x_behind: x_b,
                    input_y: y_onehot,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }

                batch_predicted_scores, batch_predicted_labels, batch_loss \
                    = sess.run([scores, predictions, loss], feed_dict)

                for i in y_onehot:
                    true_labels.append(np.argmax(i))
                for j in batch_predicted_scores:
                    predicted_scores.append(j[0])
                for k in batch_predicted_labels:
                    predicted_labels.append(k[0])

                test_loss = test_loss + batch_loss
                test_counter = test_counter + 1

            test_loss = float(test_loss / test_counter)

            # Calculate Precision & Recall & F1
            test_acc = accuracy_score(y_true=np.array(true_labels), y_pred=np.array(predicted_labels))
            test_pre = precision_score(y_true=np.array(true_labels),
                                       y_pred=np.array(predicted_labels), average='micro')
            test_rec = recall_score(y_true=np.array(true_labels),
                                    y_pred=np.array(predicted_labels), average='micro')
            test_F1 = f1_score(y_true=np.array(true_labels),
                               y_pred=np.array(predicted_labels), average='micro')

            # Calculate the average AUC
            test_auc = roc_auc_score(y_true=np.array(true_labels),
                                     y_score=np.array(predicted_scores), average='micro')

            logger.info("All Test Dataset: Loss {0:g} | Acc {1:g} | Precision {2:g} | "
                        "Recall {3:g} | F1 {4:g} | AUC {5:g}"
                        .format(test_loss, test_acc, test_pre, test_rec, test_F1, test_auc))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR + "/predictions.json", front_data_id=test_data['f_id'],
                                      behind_data_id=test_data['b_id'], true_labels=true_labels,
                                      predict_labels=predicted_labels, predict_scores=predicted_scores)

    logger.info("All Done.")
Example #17
0
def train_lmlp():
    """Training LMLP model."""

    # Load sentences, labels, and training parameters
    logger.info("✔︎ Loading data...")

    logger.info("✔︎ Training data processing...")
    train_data = dh.load_data_and_labels(FLAGS.training_data_file, FLAGS.num_classes_list, FLAGS.total_classes,
                                         FLAGS.embedding_dim, data_aug_flag=False)

    logger.info("✔︎ Validation data processing...")
    val_data = dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.num_classes_list, FLAGS.total_classes,
                                       FLAGS.embedding_dim, data_aug_flag=False)

    logger.info("Recommended padding Sequence length is: {0}".format(FLAGS.pad_seq_len))

    logger.info("✔︎ Training data padding...")
    x_train, y_train, y_train_tuple = dh.pad_data(train_data, FLAGS.pad_seq_len)

    logger.info("✔︎ Validation data padding...")
    x_val, y_val, y_val_tuple = dh.pad_data(val_data, FLAGS.pad_seq_len)

    # Build vocabulary
    VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim)
    pretrained_word2vec_matrix = dh.load_word2vec_matrix(VOCAB_SIZE, FLAGS.embedding_dim)

    # Build a graph and lmlp object
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            lmlp = eval(FLAGS.lmlp_type)(
                sequence_length=FLAGS.pad_seq_len,
                num_classes_list=list(map(int, FLAGS.num_classes_list.split(','))),
                total_classes=FLAGS.total_classes,
                vocab_size=VOCAB_SIZE,
                fc_hidden_size=FLAGS.fc_hidden_size,
                embedding_size=FLAGS.embedding_dim,
                embedding_type=FLAGS.embedding_type,
                l2_reg_lambda=FLAGS.l2_reg_lambda,
                pretrained_embedding=pretrained_word2vec_matrix,
                alpha=FLAGS.alpha,
                beta=FLAGS.beta)

            # Define training procedure
            with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                learning_rate = tf.train.exponential_decay(learning_rate=FLAGS.learning_rate,
                                                           global_step=lmlp.global_step, decay_steps=FLAGS.decay_steps,
                                                           decay_rate=FLAGS.decay_rate, staircase=True)
                optimizer = tf.train.AdamOptimizer(learning_rate)
                grads, vars = zip(*optimizer.compute_gradients(lmlp.loss))
                grads, _ = tf.clip_by_global_norm(grads, clip_norm=FLAGS.norm_ratio)
                train_op = optimizer.apply_gradients(zip(grads, vars), global_step=lmlp.global_step, name="train_op")

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in zip(grads, vars):
                if g is not None:
                    grad_hist_summary = tf.summary.histogram("{0}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar("{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            if FLAGS.train_or_restore == 'R':
                MODEL = input("☛ Please input the checkpoints model you want to restore, "
                              "it should be like(1490175368): ")  # The model you want to restore

                while not (MODEL.isdigit() and len(MODEL) == 10):
                    MODEL = input("✘ The format of your input is illegal, please re-input: ")
                logger.info("✔︎ The format of your input is legal, now loading to next step...")
                out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", MODEL))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))
            else:
                timestamp = str(int(time.time()))
                out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))

            checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
            best_checkpoint_dir = os.path.abspath(os.path.join(out_dir, "bestcheckpoints"))

            # Summaries for loss
            loss_summary = tf.summary.scalar("loss", lmlp.loss)

            # Train summaries
            train_summary_op = tf.summary.merge([loss_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

            # Validation summaries
            validation_summary_op = tf.summary.merge([loss_summary])
            validation_summary_dir = os.path.join(out_dir, "summaries", "validation")
            validation_summary_writer = tf.summary.FileWriter(validation_summary_dir, sess.graph)

            saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
            best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir, num_to_keep=3, maximize=True)

            if FLAGS.train_or_restore == 'R':
                # Load lmlp model
                logger.info("✔︎ Loading model...")
                checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
                logger.info(checkpoint_file)

                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
            else:
                if not os.path.exists(checkpoint_dir):
                    os.makedirs(checkpoint_dir)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

                # Save the embedding visualization
                saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))

            current_step = sess.run(lmlp.global_step)

            def train_step(x_batch, y_batch, y_batch_tuple):
                """A single training step"""
                y_batch_first = [i[0] for i in y_batch_tuple]
                y_batch_second = [j[1] for j in y_batch_tuple]
                y_batch_third = [k[2] for k in y_batch_tuple]

                feed_dict = {
                    lmlp.input_x: x_batch,
                    lmlp.input_y_first: y_batch_first,
                    lmlp.input_y_second: y_batch_second,
                    lmlp.input_y_third: y_batch_third,
                    lmlp.input_y: y_batch,
                    lmlp.dropout_keep_prob: FLAGS.dropout_keep_prob,
                    lmlp.is_training: True
                }
                _, step, summaries, loss = sess.run(
                    [train_op, lmlp.global_step, train_summary_op, lmlp.loss], feed_dict)
                logger.info("step {0}: loss {1:g}".format(step, loss))
                train_summary_writer.add_summary(summaries, step)

            def validation_step(x_val, y_val, y_val_tuple, writer=None):
                """Evaluates model on a validation set"""
                batches_validation = dh.batch_iter(
                    list(zip(x_val, y_val, y_val_tuple)), FLAGS.batch_size, 1)

                # Predict classes by threshold or topk ('ts': threshold; 'tk': topk)
                eval_counter, eval_loss, eval_auc = 0, 0.0, 0.0
                eval_rec_ts, eval_pre_ts, eval_F_ts = 0.0, 0.0, 0.0
                eval_rec_tk = [0.0] * FLAGS.top_num
                eval_pre_tk = [0.0] * FLAGS.top_num
                eval_F_tk = [0.0] * FLAGS.top_num
                val_scores = []

                for batch_validation in batches_validation:
                    x_batch_val, y_batch_val, y_batch_val_tuple = zip(*batch_validation)

                    y_batch_val_first = [i[0] for i in y_batch_val_tuple]
                    y_batch_val_second = [j[1] for j in y_batch_val_tuple]
                    y_batch_val_third = [k[2] for k in y_batch_val_tuple]

                    feed_dict = {
                        lmlp.input_x: x_batch_val,
                        lmlp.input_y_first: y_batch_val_first,
                        lmlp.input_y_second: y_batch_val_second,
                        lmlp.input_y_third: y_batch_val_third,
                        lmlp.input_y: y_batch_val,
                        lmlp.dropout_keep_prob: 1.0,
                        lmlp.is_training: False
                    }
                    step, summaries, scores, cur_loss = sess.run(
                        [lmlp.global_step, validation_summary_op, lmlp.scores, lmlp.loss], feed_dict)

                    for predicted_scores in scores:
                        val_scores.append(predicted_scores)

                    # Predict by threshold
                    predicted_labels_threshold, predicted_values_threshold = \
                        dh.get_label_using_scores_by_threshold(scores=scores, threshold=FLAGS.threshold)

                    cur_rec_ts, cur_pre_ts, cur_F_ts = 0.0, 0.0, 0.0

                    for index, predicted_label_threshold in enumerate(predicted_labels_threshold):
                        rec_inc_ts, pre_inc_ts = dh.cal_metric(predicted_label_threshold, y_batch_val[index])
                        cur_rec_ts, cur_pre_ts = cur_rec_ts + rec_inc_ts, cur_pre_ts + pre_inc_ts

                    cur_rec_ts = cur_rec_ts / len(y_batch_val)
                    cur_pre_ts = cur_pre_ts / len(y_batch_val)

                    cur_F_ts = dh.cal_F(cur_rec_ts, cur_pre_ts)

                    eval_rec_ts, eval_pre_ts = eval_rec_ts + cur_rec_ts, eval_pre_ts + cur_pre_ts

                    # Predict by topK
                    topK_predicted_labels = []
                    for top_num in range(FLAGS.top_num):
                        predicted_labels_topk, predicted_values_topk = \
                            dh.get_label_using_scores_by_topk(scores=scores, top_num=top_num+1)
                        topK_predicted_labels.append(predicted_labels_topk)

                    cur_rec_tk = [0.0] * FLAGS.top_num
                    cur_pre_tk = [0.0] * FLAGS.top_num
                    cur_F_tk = [0.0] * FLAGS.top_num

                    for top_num, predicted_labels_topK in enumerate(topK_predicted_labels):
                        for index, predicted_label_topK in enumerate(predicted_labels_topK):
                            rec_inc_tk, pre_inc_tk = dh.cal_metric(predicted_label_topK, y_batch_val[index])
                            cur_rec_tk[top_num], cur_pre_tk[top_num] = \
                                cur_rec_tk[top_num] + rec_inc_tk, cur_pre_tk[top_num] + pre_inc_tk

                        cur_rec_tk[top_num] = cur_rec_tk[top_num] / len(y_batch_val)
                        cur_pre_tk[top_num] = cur_pre_tk[top_num] / len(y_batch_val)

                        cur_F_tk[top_num] = dh.cal_F(cur_rec_tk[top_num], cur_pre_tk[top_num])

                        eval_rec_tk[top_num], eval_pre_tk[top_num] = \
                            eval_rec_tk[top_num] + cur_rec_tk[top_num], eval_pre_tk[top_num] + cur_pre_tk[top_num]

                    eval_loss = eval_loss + cur_loss
                    eval_counter = eval_counter + 1

                    if writer:
                        writer.add_summary(summaries, step)

                # Calculate the average AUC
                val_scores = np.array(val_scores)
                y_val = np.array(y_val)
                missing_labels_num = 0
                for index in range(FLAGS.total_classes):
                    y_true = y_val[:, index]
                    y_score = val_scores[:, index]
                    try:
                        eval_auc = eval_auc + roc_auc_score(y_true=y_true, y_score=y_score)
                    except:
                        missing_labels_num += 1

                eval_auc = eval_auc / (FLAGS.total_classes - missing_labels_num)
                eval_loss = float(eval_loss / eval_counter)
                eval_rec_ts = float(eval_rec_ts / eval_counter)
                eval_pre_ts = float(eval_pre_ts / eval_counter)
                eval_F_ts = dh.cal_F(eval_rec_ts, eval_pre_ts)

                for top_num in range(FLAGS.top_num):
                    eval_rec_tk[top_num] = float(eval_rec_tk[top_num] / eval_counter)
                    eval_pre_tk[top_num] = float(eval_pre_tk[top_num] / eval_counter)
                    eval_F_tk[top_num] = dh.cal_F(eval_rec_tk[top_num], eval_pre_tk[top_num])

                return eval_loss, eval_auc, eval_rec_ts, eval_pre_ts, eval_F_ts, eval_rec_tk, eval_pre_tk, eval_F_tk

            # Generate batches
            batches_train = dh.batch_iter(
                list(zip(x_train, y_train, y_train_tuple)), FLAGS.batch_size, FLAGS.num_epochs)

            num_batches_per_epoch = int((len(x_train) - 1) / FLAGS.batch_size) + 1

            # Training loop. For each batch...
            for batch_train in batches_train:
                x_batch_train, y_batch_train, y_batch_train_tuple = zip(*batch_train)
                train_step(x_batch_train, y_batch_train, y_batch_train_tuple)
                current_step = tf.train.global_step(sess, lmlp.global_step)

                if current_step % FLAGS.evaluate_every == 0:
                    logger.info("\nEvaluation:")
                    eval_loss, eval_auc, eval_rec_ts, eval_pre_ts, eval_F_ts, eval_rec_tk, eval_pre_tk, eval_F_tk = \
                        validation_step(x_val, y_val, y_val_tuple, writer=validation_summary_writer)

                    logger.info("All Validation set: Loss {0:g} | AUC {1:g}".format(eval_loss, eval_auc))

                    # Predict by threshold
                    logger.info("☛ Predict by threshold: Recall {0:g}, Precision {1:g}, F {2:g}"
                                .format(eval_rec_ts, eval_pre_ts, eval_F_ts))

                    # Predict by topK
                    logger.info("☛ Predict by topK:")
                    for top_num in range(FLAGS.top_num):
                        logger.info("Top{0}: Recall {1:g}, Precision {2:g}, F {3:g}"
                                    .format(top_num+1, eval_rec_tk[top_num], eval_pre_tk[top_num], eval_F_tk[top_num]))
                    best_saver.handle(eval_auc, sess, current_step)
                if current_step % FLAGS.checkpoint_every == 0:
                    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
                    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
                    logger.info("✔︎ Saved model checkpoint to {0}\n".format(path))
                if current_step % num_batches_per_epoch == 0:
                    current_epoch = current_step // num_batches_per_epoch
                    logger.info("✔︎ Epoch {0} has finished!".format(current_epoch))

    logger.info("✔︎ Done.")
Example #18
0
def train_cnn():
    """Training CNN model."""

    # Load sentences, labels, and training parameters
    logger.info("✔︎ Loading data...")

    logger.info("✔︎ Training data processing...")
    train_data = dh.load_data_and_labels(FLAGS.training_data_file, FLAGS.embedding_dim)

    logger.info("✔︎ Validation data processing...")
    validation_data = dh.load_data_and_labels(FLAGS.validation_data_file, FLAGS.embedding_dim)

    logger.info("Recommended padding Sequence length is: {0}".format(FLAGS.pad_seq_len))

    logger.info("✔︎ Training data padding...")
    x_train_front, x_train_behind, y_train = dh.pad_data(train_data, FLAGS.pad_seq_len)

    logger.info("✔︎ Validation data padding...")
    x_validation_front, x_validation_behind, y_validation = dh.pad_data(validation_data, FLAGS.pad_seq_len)

    # Build vocabulary
    VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim)
    pretrained_word2vec_matrix = dh.load_word2vec_matrix(VOCAB_SIZE, FLAGS.embedding_dim)

    # Build a graph and cnn object
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            cnn = TextCNN(
                sequence_length=FLAGS.pad_seq_len,
                num_classes=y_train.shape[1],
                vocab_size=VOCAB_SIZE,
                fc_hidden_size=FLAGS.fc_hidden_size,
                embedding_size=FLAGS.embedding_dim,
                embedding_type=FLAGS.embedding_type,
                filter_sizes=list(map(int, FLAGS.filter_sizes.split(','))),
                num_filters=FLAGS.num_filters,
                l2_reg_lambda=FLAGS.l2_reg_lambda,
                pretrained_embedding=pretrained_word2vec_matrix)

            # Define training procedure
            with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                learning_rate = tf.train.exponential_decay(learning_rate=FLAGS.learning_rate,
                                                           global_step=cnn.global_step, decay_steps=FLAGS.decay_steps,
                                                           decay_rate=FLAGS.decay_rate, staircase=True)
                optimizer = tf.train.AdamOptimizer(learning_rate)
                grads, vars = zip(*optimizer.compute_gradients(cnn.loss))
                grads, _ = tf.clip_by_global_norm(grads, clip_norm=FLAGS.norm_ratio)
                train_op = optimizer.apply_gradients(zip(grads, vars), global_step=cnn.global_step, name="train_op")

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in zip(grads, vars):
                if g is not None:
                    grad_hist_summary = tf.summary.histogram("{0}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar("{0}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            if FLAGS.train_or_restore == 'R':
                MODEL = input("☛ Please input the checkpoints model you want to restore, "
                              "it should be like(1490175368): ")  # The model you want to restore

                while not (MODEL.isdigit() and len(MODEL) == 10):
                    MODEL = input("✘ The format of your input is illegal, please re-input: ")
                logger.info("✔︎ The format of your input is legal, now loading to next step...")
                out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", MODEL))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))
            else:
                timestamp = str(int(time.time()))
                out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
                logger.info("✔︎ Writing to {0}\n".format(out_dir))

            checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
            best_checkpoint_dir = os.path.abspath(os.path.join(out_dir, "bestcheckpoints"))

            # Summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", cnn.loss)
            acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)

            # Train summaries
            train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

            # Validation summaries
            validation_summary_op = tf.summary.merge([loss_summary, acc_summary])
            validation_summary_dir = os.path.join(out_dir, "summaries", "validation")
            validation_summary_writer = tf.summary.FileWriter(validation_summary_dir, sess.graph)

            saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
            best_saver = cm.BestCheckpointSaver(save_dir=best_checkpoint_dir, num_to_keep=3, maximize=True)

            if FLAGS.train_or_restore == 'R':
                # Load cnn model
                logger.info("✔︎ Loading model...")
                checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
                logger.info(checkpoint_file)

                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
                saver.restore(sess, checkpoint_file)
            else:
                if not os.path.exists(checkpoint_dir):
                    os.makedirs(checkpoint_dir)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

                # Embedding visualization config
                config = projector.ProjectorConfig()
                embedding_conf = config.embeddings.add()
                embedding_conf.tensor_name = "embedding"
                embedding_conf.metadata_path = FLAGS.metadata_file

                projector.visualize_embeddings(train_summary_writer, config)
                projector.visualize_embeddings(validation_summary_writer, config)

                # Save the embedding visualization
                saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))

            current_step = sess.run(cnn.global_step)

            def train_step(x_batch_front, x_batch_behind, y_batch):
                """A single training step"""
                feed_dict = {
                    cnn.input_x_front: x_batch_front,
                    cnn.input_x_behind: x_batch_behind,
                    cnn.input_y: y_batch,
                    cnn.dropout_keep_prob: FLAGS.dropout_keep_prob,
                    cnn.is_training: True
                }
                _, step, summaries, loss, accuracy = sess.run(
                    [train_op, cnn.global_step, train_summary_op, cnn.loss, cnn.accuracy], feed_dict)
                logger.info("step {0}: loss {1:g}, acc {2:g}".format(step, loss, accuracy))
                train_summary_writer.add_summary(summaries, step)

            def validation_step(x_batch_front, x_batch_behind, y_batch, writer=None):
                """Evaluates model on a validation set"""
                feed_dict = {
                    cnn.input_x_front: x_batch_front,
                    cnn.input_x_behind: x_batch_behind,
                    cnn.input_y: y_batch,
                    cnn.dropout_keep_prob: 1.0,
                    cnn.is_training: False
                }
                step, summaries, loss, accuracy, recall, precision, f1, auc = sess.run(
                    [cnn.global_step, validation_summary_op, cnn.loss, cnn.accuracy,
                     cnn.recall, cnn.precision, cnn.F1, cnn.AUC], feed_dict)
                logger.info("step {0}: loss {1:g}, acc {2:g}, recall {3:g}, precision {4:g}, f1 {5:g}, AUC {6}"
                            .format(step, loss, accuracy, recall, precision, f1, auc))
                if writer:
                    writer.add_summary(summaries, step)

                return accuracy

            # Generate batches
            batches = dh.batch_iter(
                list(zip(x_train_front, x_train_behind, y_train)), FLAGS.batch_size, FLAGS.num_epochs)

            num_batches_per_epoch = int((len(x_train_front) - 1) / FLAGS.batch_size) + 1

            # Training loop. For each batch...
            for batch in batches:
                x_batch_front, x_batch_behind, y_batch = zip(*batch)
                train_step(x_batch_front, x_batch_behind, y_batch)
                current_step = tf.train.global_step(sess, cnn.global_step)

                if current_step % FLAGS.evaluate_every == 0:
                    logger.info("\nEvaluation:")
                    accuracy = validation_step(x_validation_front, x_validation_behind, y_validation,
                                               writer=validation_summary_writer)
                    best_saver.handle(accuracy, sess, current_step)
                if current_step % FLAGS.checkpoint_every == 0:
                    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
                    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
                    logger.info("✔︎ Saved model checkpoint to {0}\n".format(path))
                if current_step % num_batches_per_epoch == 0:
                    current_epoch = current_step // num_batches_per_epoch
                    logger.info("✔︎ Epoch {0} has finished!".format(current_epoch))

    logger.info("✔︎ Done.")
Example #19
0
def test_cnn():
    """Test CNN model."""

    # Load data
    logger.info("✔ Loading data...")
    logger.info('Recommended padding Sequence length is: {0}'.format(
        FLAGS.pad_seq_len))

    logger.info('✔︎ Test data processing...')
    test_data = dh.load_data_and_labels(FLAGS.test_data_file,
                                        FLAGS.embedding_dim)

    logger.info('✔︎ Test data padding...')
    x_test_front, x_test_behind, y_test = dh.pad_data(test_data,
                                                      FLAGS.pad_seq_len)

    # Build vocabulary
    VOCAB_SIZE = dh.load_vocab_size(FLAGS.embedding_dim)
    pretrained_word2vec_matrix = dh.load_word2vec_matrix(
        VOCAB_SIZE, FLAGS.embedding_dim)

    # Load cnn model
    logger.info("✔ Loading model...")
    checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x_front = graph.get_operation_by_name(
                "input_x_front").outputs[0]
            input_x_behind = graph.get_operation_by_name(
                "input_x_behind").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # pre-trained word2vec
            pretrained_embedding = graph.get_operation_by_name(
                "embedding/embedding").outputs[0]

            # Tensors we want to evaluate
            scores = graph.get_operation_by_name("output/scores").outputs
            predictions = graph.get_operation_by_name(
                "output/predictions").outputs[0]
            softmax_scores = graph.get_operation_by_name(
                "output/SoftMax_scores").outputs[0]
            topKPreds = graph.get_operation_by_name(
                "output/topKPreds").outputs[0]
            accuracy = graph.get_operation_by_name(
                "accuracy/accuracy").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = 'output/scores|output/predictions|output/SoftMax_scores|output/topKPreds'

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 'graph',
                                 'graph-cnn-{0}.pb'.format(MODEL_LOG),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(
                zip(x_test_front, x_test_behind, y_test)),
                                    FLAGS.batch_size,
                                    1,
                                    shuffle=False)

            # Collect the predictions here
            all_scores = []
            all_softmax_scores = []
            all_predictions = []
            all_topKPreds = []

            for index, x_test_batch in enumerate(batches):
                x_batch_front, x_batch_behind, y_batch = zip(*x_test_batch)
                feed_dict = {
                    input_x_front: x_batch_front,
                    input_x_behind: x_batch_behind,
                    input_y: y_batch,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }
                batch_scores = sess.run(scores, feed_dict)
                all_scores = np.append(all_scores, batch_scores)

                batch_softmax_scores = sess.run(softmax_scores, feed_dict)
                all_softmax_scores = np.append(all_softmax_scores,
                                               batch_softmax_scores)

                batch_predictions = sess.run(predictions, feed_dict)
                all_predictions = np.concatenate(
                    [all_predictions, batch_predictions])

                batch_topKPreds = sess.run(topKPreds, feed_dict)
                all_topKPreds = np.append(all_topKPreds, batch_topKPreds)

                batch_loss = sess.run(loss, feed_dict)
                batch_acc = sess.run(accuracy, feed_dict)

                logger.info(
                    "✔︎ Test batch {0}: loss {1:g}, accuracy {2:g}.".format(
                        (index + 1), batch_loss, batch_acc))

            os.makedirs(SAVE_DIR)
            np.savetxt(SAVE_DIR + '/result_sub_' + SUBSET + '.txt',
                       list(zip(all_predictions, all_topKPreds)),
                       fmt='%s')

    logger.info("✔ Done.")