f['x_valid'] = x_valid, f['y_valid'] = y_valid
    f.flush()
    f.close()
else:
    f = h5py.File(Configure.dataset_path, 'r')
    x_train = f['x_train'][:]
    y_train = f['y_train'][:]
    x_test = f['x_test'][:]
    y_test = f['y_test'][:]
    x_valid = f['x_valid'][:]
    y_valid = f['y_valid'][:]
    f.close()

print("train/valid/test split: {:d}/{:d}/{:d}".format(len(y_train), len(y_valid), len(y_test)))
print('---> create train/valid data wapper')
train_data_wrapper = data_util.DataWrapper(x_train, y_train, istrain=True)
valid_data_wrapper = data_util.DataWrapper(x_valid, y_valid, istrain=True)
test_data_wrapper = data_util.DataWrapper(x_valid, y_valid, istrain=False)

print('---> build model')
# Built model and start training
# ==================================================
with tf.Graph().as_default(), tf.device('/gpu:2'):
    session_conf = tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=False)
    session = tf.Session(config=session_conf)
    with session.as_default():
        text_rcnn = TextRCNN(
            label_size=FLAGS.label_size,
            sequence_length=max_document_length,
Example #2
0
print('---> load test text dataset')
# datasets = data_util.get_datasets_20newsgroup()
# x_text, y = data_util.load_data_labels(datasets)
x_text, y = data_util.load_text_datasets()

# Restore vocabulary in checkpoint dir
vocabulary_path = os.path.join(FLAGS.checkpoint_dir, '..', 'vocabulary')
vocab_processor = learn.preprocessing.VocabularyProcessor.restore(
    filename=vocabulary_path)

# map text to vocabulary index
x_text = np.array(list(vocab_processor.transform(x_text)))
print('---> create test data wapper')
test_data_wrapper = data_util.DataWrapper(x_text,
                                          istrain=False,
                                          is_shuffle=False)

# Evaluation
# ==================================================

checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
print(checkpoint_file)
with tf.Graph().as_default(), tf.device('/gpu:2'):
    session_conf = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
    session = tf.Session(config=session_conf)
    with session.as_default():
        # Load the saved meta graph and restore variables
        saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
        saver.restore(session, checkpoint_file)