Example #1
0
    def __init__(
        self,
        source_root,
        target_root,
        opts,
        latents_root=None,
        labels_path=None,
        target_transform=None,
        source_transform=None,
    ):

        self.target_paths = sorted(data_utils.make_dataset(target_root))
        self.source_paths = sorted(data_utils.make_dataset(source_root))
        self.latent_paths = None
        if latents_root is not None:
            self.latent_paths = sorted(
                data_utils.make_latents_dataset(latents_root)
            )

        self.path_to_label = None
        if labels_path is not None:
            with open(labels_path) as f:
                labels = json.load(f)["labels"]
            self.path_to_label = {path: label for path, label in labels}

        self.source_transform = source_transform
        self.target_transform = target_transform
        self.opts = opts
 def __init__(self,
              source_root,
              target_root,
              opts,
              target_transform=None,
              source_transform=None):
     self.source_paths = sorted(data_utils.make_dataset(source_root))
     self.target_paths = sorted(data_utils.make_dataset(target_root))
     self.source_transform = source_transform
     self.target_transform = target_transform
     self.opts = opts
Example #3
0
	def __init__(self, root=None, paths_list=None, opts=None, transform=None, return_path=False):
		if paths_list is None:
			self.paths = sorted(data_utils.make_dataset(root))
		else:
			self.paths = data_utils.make_dataset_from_paths_list(paths_list)
		self.transform = transform
		self.opts = opts
		self.return_path = return_path
Example #4
0
# ===========================
if __name__ == '__main__':

    args = argument_parser()

    input_path = args.input_path
    output_path = args.output_path

    if input_path == 'voc_horse':
        # get all non-horse voc files:
        input_filenames = get_voc_classification_filenames(voc_folder_path=CONSTS.VOC_DIR, category='horse')
    elif input_path == 'voc_mis':
        # get all non-person voc files:
        input_filenames = get_voc_classification_filenames(voc_folder_path=CONSTS.VOC_DIR, category='person')
    else:
        input_filenames = make_dataset(dir=input_path, ext='jpg')

    gen_data(mode=args.mode, input_filenames=input_filenames, output_path=output_path,
            num_sets=args.num_sets, minimalImage_size=args.minimalImage_size, limit=args.limit)




    # [Filter box proposals with the selective search code]
    # # Feel free to change parameters
    # boxes_filter = selective_search.box_filter(boxes, min_size=20, topN=80)
    #
    # # draw rectangles on the original image
    # fig, ax = plt.subplots(figsize=(6, 6))
    # ax.imshow(image)
    # for x1, y1, x2, y2 in boxes_filter:
Example #5
0
	def __init__(self, root, opts, transform=None):
		self.paths = sorted(data_utils.make_dataset(root))
		self.transform = transform
		self.opts = opts