Example #1
0
def main(argv=None):
    imgnames = filter(
        lambda x: x.lower().endswith(".jpg") or x.lower().endswith(".png"),
        os.listdir(FLAGS.srcimgs))
    imgs = np.asarray(map(
        lambda x: preprocess_yadav(x),
        map(
            lambda x: cv2.resize(read_img(os.path.join(FLAGS.srcimgs, x)),
                                 (FLAGS.img_cols, FLAGS.img_rows)), imgnames)),
                      dtype=np.float32)
    print 'Loaded images from %s' % FLAGS.srcimgs
    sys.stdout.flush()
    results = []
    with tf.Session() as sess:
        model = YadavModel(train=False)
        saver = tf.train.Saver()
        saver.restore(sess, FLAGS.weights)
        print 'Loaded model from %s' % FLAGS.weights
        sys.stdout.flush()
        output = sess.run(model.labels_pred,
                          feed_dict={
                              model.features: imgs,
                              model.keep_prob: 1.0
                          })
        for i in range(len(imgs)):
            results.append((imgnames[i], top3_as_string(output, i)))

    for i in range(len(results)):
        print results[i][0], results[i][1]
def main(argv=None):
    d = {} # added
    imgnames = filter(lambda x: x.lower().endswith(".jpg") or x.lower().endswith(".png"), os.listdir(FLAGS.srcimgs))
    imgs = np.asarray(map(lambda x: preprocess_yadav(x),
                          map(lambda x: cv2.resize(read_img(os.path.join(FLAGS.srcimgs, x)), (FLAGS.img_cols, FLAGS.img_rows)),
                              imgnames))
                      , dtype=np.float32)
    imgs = imgs[:,:,:] # imgs[:5000,:,:] takes first 5000 and imgs[5000:,:,:] will do the rest
    print 'Loaded images from %s'%FLAGS.srcimgs
    sys.stdout.flush()
    results = []
    with tf.Session() as sess:
        model = YadavModel(train=False)
        saver = tf.train.Saver()
        saver.restore(sess, FLAGS.weights)
        print 'Loaded model from %s'%FLAGS.weights
        sys.stdout.flush()
        print("anticipation of softmax production") #too many images causes below line to fail for some reason
        output = sess.run(model.labels_pred, feed_dict={model.features: imgs, model.keep_prob: 1.0}) 
        print("completion of softmax production")
        for i in range(len(imgs)):
            d.update({imgnames[i]: list(output[i])}) # added
            results.append((imgnames[i], top3_as_string(output, i)))
    for i in range(len(results)):
        print results[i][0], results[i][1]

    df = pd.DataFrame(d).T # added
    df.to_csv(FLAGS.srcimgs+"/predictions.csv") # added
Example #3
0
def main(argv=None):
    imgnames = filter(lambda x: x.lower().endswith(".jpg") or x.lower().endswith(".png"), os.listdir(FLAGS.srcimgs))
    imgs = np.asarray(map(lambda x: preprocess_yadav(x),
                          map(lambda x: cv2.resize(read_img(os.path.join(FLAGS.srcimgs, x)), (FLAGS.img_cols, FLAGS.img_rows)),
                              imgnames))
                      , dtype=np.float32)
    print 'Loaded images from %s'%FLAGS.srcimgs
    sys.stdout.flush()
    results = []
    with tf.Session() as sess:
        model = YadavModel(train=False)
        saver = tf.train.Saver()
        saver.restore(sess, FLAGS.weights)
        print 'Loaded model from %s'%FLAGS.weights
        sys.stdout.flush()
        output = sess.run(model.labels_pred, feed_dict={model.features: imgs, model.keep_prob: 1.0})
        # index = np.argmax(output, axis=1)[0]
        index = 5

        print 'index:', index
        heatmap = sess.run(model.heatmap, feed_dict={model.features: imgs, model.keep_prob: 1.0, model.index: index})
        heatmap = np.array(heatmap)
        print 'heatmap.shape1', heatmap.shape

        heatmap = np.sum(np.maximum(heatmap[0], 0), axis=0)
        print 'heatmap.shape1', heatmap.shape
        pool_grad = np.mean(heatmap, axis=(0, 1))
        print 'pool_grad:', pool_grad
        print 'pool_grad.shape', pool_grad.shape
        for i in range(32):
            # heatmap[:, :, i] *= np.mean(heatmap[:, :, i])
            heatmap[:, :, i] *= pool_grad[i]
        heatmap = np.mean(heatmap, axis=-1)
        heatmap = np.maximum(heatmap, 0)
        heatmap /= np.max(heatmap)

        #heatmap visualation
        plt.matshow(heatmap)
        plt.savefig("heatmap.png")

        ori_img = cv2.imread("/home/yebin/work/gtsrb-cnn-attack/heat_map_test/6.png")
        ori_img = cv2.resize(ori_img, (256, 256))
        heatmap = cv2.resize(heatmap, (256, 256))

        heatmap = np.uint8(255 * heatmap)
        cv2.imwrite("gray.png", heatmap)
        # cv2.imwrite("heatmap256.png", heatmap)

        heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
        cv2.imwrite("heatmap256.png", heatmap)
        superimposed_img = heatmap * 0.4 + ori_img
        cv2.imwrite("heatmap_and_img.png", superimposed_img)
        for i in range(len(imgs)):
            results.append((imgnames[i], top3_as_string(output, i)))

    for i in range(len(results)):
        print results[i][0], results[i][1]
def main(argv=None):
    with tf.device(FLAGS.device):
        with tf.Session() as sess:
            print "Noise loaded from", FLAGS.model_path
            print "Mask", FLAGS.attack_mask
            print "Source image", FLAGS.src_image
            bimg = cv2.resize(read_img(FLAGS.src_image),
                              (FLAGS.img_rows, FLAGS.img_cols)) / 255.0 - 0.5

            noise= tf.Variable(tf.random_uniform( \
                [FLAGS.img_rows, FLAGS.img_cols, FLAGS.nb_channels], -0.5, 0.5), \
                name='noiseattack/noise', collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'adv_var'])

            saver = tf.train.Saver(var_list=[noise])
            saver.restore(sess, FLAGS.model_path)

            noise_val = sess.run(noise)
            write_img('noise.png', (noise_val) * 255.0)
            mask = read_img(FLAGS.attack_mask) / 255.0
            noise_val = noise_val * mask
            write_img(FLAGS.output_path, (bimg + noise_val + 0.5) * 255)
            print "Wrote image to", FLAGS.output_path
Example #5
0
def main(argv=None):
    with tf.device(FLAGS.device):
        with tf.Session() as sess:
            print "Noise loaded from", FLAGS.model_path
            print "Mask", FLAGS.attack_mask
            print "Source image", FLAGS.big_image

            if FLAGS.resize_method == "area":
                resize_met = tf.image.ResizeMethod.AREA
            elif FLAGS.resize_method == "bicubic":
                resize_met = tf.image.ResizeMethod.BICUBIC
            elif FLAGS.resize_method == "bilinear":
                resize_met = tf.image.ResizeMethod.BILINEAR
            elif FLAGS.resize_method == "nearestneighbor":
                resize_met = tf.image.ResizeMethod.NEAREST_NEIGHBOR
            else:
                raise Exception(
                    "resize method needs to be one of: area, bicubic, bilinear, nearestneighbor"
                )

            bimg = cv2.resize(
                read_img(FLAGS.big_image),
                (FLAGS.resize_rows, FLAGS.resize_cols)) / 255.0 - 0.5
            print 'bimg shape', bimg.shape

            noise= tf.Variable(tf.random_uniform( \
                [FLAGS.img_rows, FLAGS.img_cols, FLAGS.nb_channels], -0.5, 0.5), \
                name='noiseattack/noise', collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'adv_var'])

            mask = tf.placeholder(tf.float32, \
                                  shape= \
                                    (FLAGS.img_rows, \
                                    FLAGS.img_cols, \
                                    FLAGS.nb_channels), \
                                   name="noiseattack/noise_mask")

            saver = tf.train.Saver(var_list=[noise])
            saver.restore(sess, FLAGS.model_path)

            if not FLAGS.resize_noise_only:
                if FLAGS.downsize_first:
                    noise_val = sess.run(tf.image.resize_images( \
                                            tf.image.resize_images(noise * mask,(32,32)), \
                                            size=(bimg.shape[0], bimg.shape[1]), \
                                            method=resize_met), \
                                         feed_dict={mask: read_img(FLAGS.attack_mask)/255.0}
                                        )
                else:
                    noise_val = sess.run(tf.image.resize_images( \
                                            noise*mask,
                                            size=(bimg.shape[0], bimg.shape[1]), \
                                            method=resize_met), \
                                         feed_dict={mask: read_img(FLAGS.attack_mask)/255.0}
                                        )
            else:
                noise_val = sess.run(tf.image.resize_images(noise, \
                                                            size=(bimg.shape[0], bimg.shape[1]), \
                                                            method=resize_met))
                print 'noise shape', noise_val.shape
                mask = read_img(FLAGS.attack_mask) / 255.0
                print 'mask shape', mask.shape
                noise_val = noise_val * mask

            write_img(FLAGS.output_path, (bimg + noise_val + 0.5) * 255)
            print "Wrote image to", FLAGS.output_path
def main(argv=None):
    with tf.device(FLAGS.device):
        print "Parameters"
        for k in sorted(FLAGS.__dict__["__flags"].keys()):
            print k, FLAGS.__dict__["__flags"][k]

        op, model_obj, sess, pholders, varops = setup_attack_graph()

        model = varops['adv_pred']

        data = map(
            lambda z: preprocess_yadav(z),
            map(
                lambda y: read_img(os.path.join(FLAGS.attack_srcdir, y)),
                filter(lambda x: x.endswith(".png"),
                       os.listdir(FLAGS.attack_srcdir))))
        num_images = len(data)

        feed_dict = {
            pholders['image_in']: data,
            pholders['attack_target']: get_adv_target(nb_inputs=num_images),
            pholders['noise_mask']: read_img(FLAGS.attack_mask) / 255.0,
            model_obj.keep_prob: 1.0
        }

        if FLAGS.printability_optimization:
            feed_dict[pholders['printable_colors']] = get_print_triplets()

        # used to save checkpoints after each epoch
        saver = tf.train.Saver(max_to_keep=5)

        clean_model_loss = model_loss(pholders['attack_target'],
                                      varops['adv_pred'],
                                      mean=True)

        latest_misrate = FLAGS.min_rate_to_save
        latest_loss = 10000

        for i in xrange(FLAGS.attack_epochs):
            print 'Epoch %d' % i,
            sys.stdout.flush()
            _,  train_loss, mod_loss, noisy_in, noisy_classes = sess.run( \
                (op, \
                varops['adv_loss'], \
                varops['loss'], \
                varops['noisy_inputs'], \
                varops['adv_pred']) \
                , feed_dict=feed_dict)

            if FLAGS.regloss != "none":
                reg_loss = sess.run(varops['reg_loss'], feed_dict=feed_dict)
            else:
                reg_loss = 0

            clean_loss, clean_classes = sess.run(
                (clean_model_loss, model),
                feed_dict={
                    pholders['image_in']:
                    data,
                    pholders['attack_target']:
                    get_adv_target(nb_inputs=num_images),
                    pholders['noise_mask']:
                    np.zeros([
                        FLAGS.input_rows, FLAGS.input_cols, FLAGS.nb_channels
                    ]),
                    model_obj.keep_prob:
                    1.0
                })

            print "adversarial loss %.5f reg loss %.5f model loss %.5f model loss on clean img: %.5f" % (
                train_loss, reg_loss, mod_loss, clean_loss),
            sys.stdout.flush()

            if FLAGS.printability_optimization:
                print "noise NPS %.5f" % sess.run(varops['printer_error'],
                                                  feed_dict=feed_dict),

            num_misclassified = 0

            for j in xrange(num_images):
                clean_classification = np.argmax(clean_classes[j])
                noise_classification = np.argmax(noisy_classes[j])
                if clean_classification != noise_classification and noise_classification == FLAGS.target_class:
                    num_misclassified += 1

            proportion_misclassified = float(num_misclassified) / float(
                num_images)
            print 'percent misclassified images %.1f' % (
                proportion_misclassified * 100.0)

            if proportion_misclassified > latest_misrate or \
                    (proportion_misclassified == latest_misrate and train_loss < latest_loss) \
                    or ("octagon" in FLAGS.attack_mask and train_loss < latest_loss):
                latest_misrate = proportion_misclassified
                latest_loss = train_loss
                saver.save(sess,
                           os.path.join('optimization_output',
                                        FLAGS.checkpoint, 'model',
                                        FLAGS.checkpoint),
                           global_step=i)
            if FLAGS.save_all_noisy_images:
                write_img(
                    os.path.join(
                        'optimization_output', FLAGS.checkpoint,
                        "noisy_images",
                        "noisyimg_%s_epoch_%d.png" % (FLAGS.checkpoint, i)),
                    ((noisy_in[0] + 0.5) * 255).astype(int))