# model.set_r(hp.tts_r) optimiser = optim.Adam(model.parameters()) current_step = model.get_step() if not force_gta: for session in hp.tts_schedule: r, lr, max_step, batch_size = session if current_step < max_step: train_set, attn_example = get_tts_dataset( paths.data, batch_size, r) model.set_r(r) training_steps = max_step - current_step simple_table([(f'Steps with r={r}', str(training_steps // 1000) + 'k Steps'), ('Batch Size', batch_size), ('Learning Rate', lr), ('Outputs/Step (r)', model.get_r())]) tts_train_loop(model, optimiser, train_set, lr, training_steps, attn_example) print('Training Complete.')
n_mels=hp.num_mels, fft_bins=hp.num_mels, postnet_dims=hp.tts_postnet_dims, encoder_K=hp.tts_encoder_K, lstm_dims=hp.tts_lstm_dims, postnet_K=hp.tts_postnet_K, num_highways=hp.tts_num_highways, dropout=hp.tts_dropout).cuda() paths = Paths(hp.data_path, hp.voc_model_id, hp.tts_model_id) model.restore(paths.tts_latest_weights) optimiser = optim.Adam(model.parameters()) train_set = get_tts_dataset(paths.data, batch_size) if not force_gta: total_steps = 10_000_000 if force_train else hp.tts_total_steps simple_table([ ('Remaining', str( (total_steps - model.get_step()) // 1000) + 'k Steps'), ('Batch Size', batch_size), ('Learning Rate', lr) ]) tts_train_loop(model, optimiser, train_set, lr, total_steps) print('Training Complete.') print(