num_cam = 6 ########### DATASET ########### img_dir = dataset_path + 'Market-1501/bounding_box_train_camstyle_merge/' train_dataset = imgdataset_camtrans(dataset_dir=img_dir, txt_path=ann_file_train, transformer='test', K=num_cam, num_cam=num_cam) train_loader = DataLoader(dataset=train_dataset, batch_size=1, shuffle=False, num_workers=4) img_dir = dataset_path + 'Market-1501/' test_dataset = imgdataset(dataset_dir=img_dir, txt_path=ann_file_test, transformer='test') test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=4) ########### TEST ########### model, _ = resnet50(pretrained=snapshot, num_classes=702) model.cuda() model.eval() print('extract feature for training set') train_feas = extract_fea_camtrans(model, train_loader) _, cam_ids, frames = get_info(ann_file_train)
num_cam = 6 ########## DATASET ########### dataset_path = 'data/dataset/' src_dir = dataset_path + 'DukeMTMC-reID/bounding_box_train/' tar_dir = dataset_path + 'Market-1501/bounding_box_train_camstyle_merge/' tar_dir_test = dataset_path + 'Market-1501/' src_annfile = 'list_duke/list_duke_train.txt' tar_annfile = 'list_market/list_market_train.txt' tar_annfile_test = 'list_market/list_market_test.txt' #resnet50: https://download.pytorch.org/models/resnet50-19c8e357.pth imageNet_pretrain = 'resnet50-19c8e357.pth' train_dataset = imgdataset(dataset_dir=src_dir, txt_path=src_annfile, transformer='train') train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, drop_last=True) train_dataset_t = imgdataset_camtrans(dataset_dir=tar_dir, txt_path=tar_annfile, transformer='train', num_cam=num_cam, K=K) train_loader_t = DataLoader(dataset=train_dataset_t, batch_size=int(batch_size / K), shuffle=True,
base_lr = 0.01 num_epoches = 100 batch_size = 128 num_instances = 4 K = 4 num_cam = opt.num_cam sys.stdout = Logger(os.path.join('./snapshot', opt.name, 'log_train.txt')) ########## DATASET ########### dataset_path = 'data/' if opt.src == 'unreal': src_dir = dataset_path else: src_dir = dataset_path + opt.src + '/bounding_box_train_camstyle_merge/' src_annfile = 'list_{}/list_{}_train.txt'.format(opt.src, opt.src) train_dataset = imgdataset(dataset_dir=src_dir, txt_path=src_annfile, transformer='train') dataset_path = 'data/' if opt.src2 == 'unreal': src_dir2 = dataset_path else: src_dir2 = dataset_path + opt.src2 + '/bounding_box_train_camstyle_merge/' src2_annfile = 'list_{}/list_{}_train.txt'.format(opt.src2, opt.src2) train_dataset2 = imgdataset(dataset_dir=src_dir2, txt_path=src2_annfile, transformer='train') train_datasource = train_dataset.data_source numpids = len(train_dataset.pids) numcams = len(train_dataset.cams)