Example #1
0
from utils.checkpoint import save_tagger_checkpoint
from utils.device import get_device
from utils.metric import AverageMeter, binary_accuracy
from utils.optimizer import clip_gradient, adjust_learning_rate

# Data parameters
data_folder = './scn_data'  # folder with data files saved by create_input_files.py
# base name shared by data files
data_name = 'flickr10k_5_cap_per_img_5_min_word_freq'

# Model parameters
semantic_size = 1000
dropout = 0.15
# sets device for model and PyTorch tensors
device = get_device()
# set to true only if inputs to model are fixed size; otherwise lot of computational overhead
cudnn.benchmark = True

# Training parameters
start_epoch = 0
# number of epochs to train for (if early stopping is not triggered)
epochs = 10
# keeps track of number of epochs since there's been an improvement in validation BLEU
epochs_since_improvement = 0
batch_size = 32
adjust_lr_after_epoch = 4
fine_tune_encoder = False
workers = 1  # for data-loading; right now, only 1 works with h5py
encoder_lr = 1e-4  # learning rate for encoder if fine-tuning
grad_clip = 5.  # clip gradients at an absolute value of
Example #2
0
            }

            train_opts = {
                'crit':
                'MSELoss',  #'MSELoss', #'BCELoss' for binary classification
                'net': net_list[net_idx],
                'optim': 'Adam',
                'weight_decay': wd_list[wd_idx],
                'optim_kwargs': {},
                'epochs': 15,
                'lr': lr_list[lr_idx],
                'milestones_perc': [1 / 3, 2 / 3],
                'gamma': 0.1,
                'train_batch_size': 31,
                'test_batch_size': 31,
                'device': get_device(),
                'seed': 0,
            }

            results_opts = {
                'training_results_path': './results',
                'train_dump_file': 'training_results.json',
            }

            opts = dict(loader_opts, **net_opts)
            opts = dict(opts, **train_opts)
            opts = dict(opts, **results_opts)

            # these meters will be displayed to the console and saved into a csv
            stats_meter = {
                'loss': lambda variables: float(variables['loss'].item()),