def main():
    torch.multiprocessing.set_start_method("spawn", force=True)
    """Create the model and start the evaluation process."""
    args = get_arguments()

    os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu
    gpus = [int(i) for i in args.gpu.split(',')]
    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    deeplab = CorrPM_Model(args.num_classes, args.num_points)
    if len(gpus) > 1:
        model = DataParallelModel(deeplab)
    else:
        model = deeplab

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])

    if args.data_name == 'lip':
        lip_dataset = LIPDataSet(args.data_dir, VAL_POSE_ANNO_FILE, args.dataset, crop_size=input_size, transform=transform)
        num_samples = len(lip_dataset)
        valloader = data.DataLoader(lip_dataset, batch_size=args.batch_size * len(gpus),
                                    shuffle=False, num_workers=4, pin_memory=True)

    restore_from = args.restore_from
    state_dict = model.state_dict().copy()
    state_dict_old = torch.load(restore_from)

    for key in state_dict.keys():
        if key not in state_dict_old.keys():
            print(key)
    for key, nkey in zip(state_dict_old.keys(), state_dict.keys()):
        if key != nkey:
            state_dict[key[7:]] = deepcopy(state_dict_old[key])
        else:
            state_dict[key] = deepcopy(state_dict_old[key])

    model.load_state_dict(state_dict)
    model.eval()
    model.cuda()

    parsing_preds, scales, centers = valid(model, valloader, input_size, num_samples, len(gpus))

    mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size, args.dataset)
    print(mIoU)

    end = datetime.datetime.now()
    print(end - start, 'seconds')
    print(end)
Example #2
0
def main():
    """Create the model and start the training."""

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    writer = SummaryWriter(args.snapshot_dir)
    gpus = [int(i) for i in args.gpu.split(',')]
    if not args.gpu == 'None':
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    h, w = map(int, args.input_size.split(','))
    input_size = [h, w]

    cudnn.enabled = True
    # cudnn related setting
    cudnn.benchmark = True
    torch.backends.cudnn.deterministic = False
    torch.backends.cudnn.enabled = True

    deeplab = Res_Deeplab(num_classes=args.num_classes)

    # dump_input = torch.rand((args.batch_size, 3, input_size[0], input_size[1]))
    # writer.add_graph(deeplab.cuda(), dump_input.cuda(), verbose=False)

    saved_state_dict = torch.load(args.restore_from)
    new_params = deeplab.state_dict().copy()
    for i in saved_state_dict:
        i_parts = i.split('.')
        # print(i_parts)
        if not i_parts[0] == 'fc':
            new_params['.'.join(i_parts[0:])] = saved_state_dict[i]

    deeplab.load_state_dict(new_params)

    model = DataParallelModel(deeplab)
    model.cuda()

    criterion = CriterionAll()
    criterion = DataParallelCriterion(criterion)
    criterion.cuda()

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])

    trainloader = data.DataLoader(LIPDataSet(args.data_dir,
                                             args.dataset,
                                             crop_size=input_size,
                                             transform=transform),
                                  batch_size=args.batch_size * len(gpus),
                                  shuffle=True,
                                  num_workers=2,
                                  pin_memory=True)
    #lip_dataset = LIPDataSet(args.data_dir, 'val', crop_size=input_size, transform=transform)
    #num_samples = len(lip_dataset)

    #valloader = data.DataLoader(lip_dataset, batch_size=args.batch_size * len(gpus),
    #                             shuffle=False, pin_memory=True)

    optimizer = optim.SGD(model.parameters(),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)
    optimizer.zero_grad()

    total_iters = args.epochs * len(trainloader)
    for epoch in range(args.start_epoch, args.epochs):
        model.train()
        for i_iter, batch in enumerate(trainloader):
            i_iter += len(trainloader) * epoch
            lr = adjust_learning_rate(optimizer, i_iter, total_iters)

            images, labels, edges, _ = batch
            labels = labels.long().cuda(non_blocking=True)
            edges = edges.long().cuda(non_blocking=True)

            preds = model(images)

            loss = criterion(preds, [labels, edges])
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if i_iter % 100 == 0:
                writer.add_scalar('learning_rate', lr, i_iter)
                writer.add_scalar('loss', loss.data.cpu().numpy(), i_iter)

            if i_iter % 500 == 0:

                images_inv = inv_preprocess(images, args.save_num_images)
                labels_colors = decode_parsing(labels,
                                               args.save_num_images,
                                               args.num_classes,
                                               is_pred=False)
                edges_colors = decode_parsing(edges,
                                              args.save_num_images,
                                              2,
                                              is_pred=False)

                if isinstance(preds, list):
                    preds = preds[0]
                preds_colors = decode_parsing(preds[0][-1],
                                              args.save_num_images,
                                              args.num_classes,
                                              is_pred=True)
                pred_edges = decode_parsing(preds[1][-1],
                                            args.save_num_images,
                                            2,
                                            is_pred=True)

                img = vutils.make_grid(images_inv,
                                       normalize=False,
                                       scale_each=True)
                lab = vutils.make_grid(labels_colors,
                                       normalize=False,
                                       scale_each=True)
                pred = vutils.make_grid(preds_colors,
                                        normalize=False,
                                        scale_each=True)
                edge = vutils.make_grid(edges_colors,
                                        normalize=False,
                                        scale_each=True)
                pred_edge = vutils.make_grid(pred_edges,
                                             normalize=False,
                                             scale_each=True)

                writer.add_image('Images/', img, i_iter)
                writer.add_image('Labels/', lab, i_iter)
                writer.add_image('Preds/', pred, i_iter)
                writer.add_image('Edges/', edge, i_iter)
                writer.add_image('PredEdges/', pred_edge, i_iter)

            print('iter = {} of {} completed, loss = {}'.format(
                i_iter, total_iters,
                loss.data.cpu().numpy()))

        torch.save(
            model.state_dict(),
            osp.join(args.snapshot_dir, 'LIP_epoch_' + str(epoch) + '.pth'))

        #parsing_preds, scales, centers = valid(model, valloader, input_size,  num_samples, len(gpus))

        #mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size)

        #print(mIoU)
        #writer.add_scalars('mIoU', mIoU, epoch)

    end = timeit.default_timer()
    print(end - start, 'seconds')
Example #3
0
def main():
    """start multiprocessing method"""
    try:
        mp.set_start_method('spawn')
    except RuntimeError:
        pass
    """Create the model and start the training."""
    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    gpus = [int(i) for i in args.gpu.split(',')]
    if not args.gpu == 'None':
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    h, w = map(int, args.input_size.split(','))
    input_size = [h, w]

    cudnn.enabled = True
    # cudnn related setting
    cudnn.benchmark = True
    torch.backends.cudnn.deterministic = True  #False
    torch.backends.cudnn.enabled = True
    torch.cuda.empty_cache()

    deeplab = CorrPM_Model(num_classes=args.num_classes)
    saved_state_dict = torch.load(args.restore_from)
    new_params = deeplab.state_dict().copy()
    i = 0
    print("Now is loading pre-trained res101 model!")
    for i in saved_state_dict:
        i_parts = i.split('.')
        if not i_parts[0] == 'fc':
            new_params['.'.join(i_parts[0:])] = saved_state_dict[i]

    deeplab.load_state_dict(new_params)
    criterion = CriterionPoseEdge()
    criterion = DataParallelCriterion(criterion)
    criterion.cuda()

    snapshot_fname = osp.join(args.snapshot_dir, 'LIP_epoch_')
    snapshot_best_fname = osp.join(args.snapshot_dir, 'LIP_best.pth')

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])

    dataset_lip = LIPDataSet(args.data_dir,
                             args.pose_anno_file,
                             args.dataset,
                             crop_size=input_size,
                             dataset_list=args.dataset_list,
                             transform=transform)
    trainloader = data.DataLoader(dataset_lip,
                                  batch_size=args.batch_size * len(gpus),
                                  shuffle=True,
                                  num_workers=1,
                                  pin_memory=True)
    lip_dataset = LIPDataSet(args.data_dir,
                             VAL_ANNO_FILE,
                             'val',
                             crop_size=input_size,
                             dataset_list=args.dataset_list,
                             transform=transform)
    num_samples = len(lip_dataset)
    valloader = data.DataLoader(lip_dataset,
                                batch_size=args.batch_size * len(gpus),
                                shuffle=False,
                                num_workers=0,
                                pin_memory=True)

    optimizer = optim.SGD(deeplab.parameters(),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    model = DataParallelModel(deeplab)
    model.cuda()

    optimizer.zero_grad()

    total_iters = args.epochs * len(trainloader)
    total_iter_per_batch = len(trainloader)
    print("total iters:", total_iters)

    best_iou = 0
    i_iter = 0
    temp = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        model.train()
        for i_iter, batch in enumerate(trainloader):
            iter_lr = i_iter + epoch * len(trainloader)
            lr = adjust_learning_rate(optimizer, iter_lr, total_iters)
            images, labels, pose, edge, _ = batch
            labels = labels.long().cuda(non_blocking=True)
            edge = edge.long().cuda(non_blocking=True)
            pose = pose.float().cuda(non_blocking=True)

            preds = model(images)
            loss = criterion(preds, [labels, edge, pose])
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if i_iter % 500 == 0:
                tim = time.time()
                print('iter:{}/{},loss:{:.3f},lr:{:.3e},time:{:.1f}'.format(
                    i_iter, total_iter_per_batch,
                    loss.data.cpu().numpy(), lr, tim - temp))
                temp = tim

        h = time.time()
        if epoch % 5 == 0:
            print("----->Epoch:", epoch)
            parsing_preds, scales, centers = valid(model, valloader,
                                                   input_size, num_samples,
                                                   len(gpus), criterion, args)
            if args.dataset_list == '_id.txt':
                mIoU = compute_mean_ioU(parsing_preds, scales, centers,
                                        args.num_classes, args.data_dir,
                                        input_size)
            miou = mIoU['Mean IU']
            is_best_iou = miou > best_iou
            best_iou = max(miou, best_iou)
            torch.save(model.state_dict(), snapshot_fname + '.pth')
            if is_best_iou:
                print("Best iou epoch: ", epoch)
                shutil.copyfile(snapshot_fname + '.pth', snapshot_best_fname)

    end = datetime.datetime.now()
    print(end - start, 'seconds')
    print(end)
Example #4
0
def main():
    """Create the model and start the training."""
    print(args)
    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    writer = SummaryWriter(args.snapshot_dir)
    gpus = [int(i) for i in args.gpu.split(',')]
    if not args.gpu == 'None':
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    h, w = map(int, args.input_size.split(','))
    input_size = [h, w]

    cudnn.enabled = True
    # cudnn related setting
    cudnn.benchmark = True
    torch.backends.cudnn.deterministic = False
    torch.backends.cudnn.enabled = True

    deeplab = get_cls_net(config=config,
                          num_classes=args.num_classes,
                          is_train=True)
    model = DataParallelModel(deeplab)

    saved_state_dict = torch.load(args.restore_from)

    if args.start_epoch > 0:
        model = DataParallelModel(deeplab)
        model.load_state_dict(saved_state_dict['state_dict'])
    else:
        new_params = model.state_dict().copy()
        state_dict_pretrain = saved_state_dict['state_dict']
        for state_name in state_dict_pretrain:
            if state_name in new_params:
                new_params[state_name] = state_dict_pretrain[state_name]
                #print ('LOAD',state_name)
            else:
                print('NOT LOAD', state_name)
        model.load_state_dict(new_params)

    print('-------Load Weight', args.restore_from)

    model.cuda()

    criterion = CriterionAll2()
    criterion = DataParallelCriterion(criterion)
    criterion.cuda()

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])

    trainloader = data.DataLoader(LIPDataSet(args.data_dir,
                                             args.dataset,
                                             crop_size=input_size,
                                             transform=transform),
                                  batch_size=args.batch_size * len(gpus),
                                  shuffle=True,
                                  num_workers=4,
                                  pin_memory=True)

    num_samples = 5000
    '''
    list_map = []

    for part in deeplab.path_list:
        list_map = list_map + list(map(id, part.parameters()))
    
    base_params = filter(lambda p: id(p) not in list_map,
                         deeplab.parameters())
    params_list = []
    params_list.append({'params': base_params, 'lr':args.learning_rate*0.1})
    for part in deeplab.path_list:
        params_list.append({'params': part.parameters()})
    print ('len(params_list)',len(params_list))
    '''

    list_map = []

    for part in deeplab.path_list:
        list_map = list_map + list(map(id, part.parameters()))

    base_params = filter(lambda p: id(p) not in list_map, deeplab.parameters())
    params_list = []
    params_list.append({'params': base_params, 'lr': 1e-6})
    for part in deeplab.path_list:
        params_list.append({'params': part.parameters()})
    print('len(params_list)', len(params_list))
    optimizer = torch.optim.SGD(params_list,
                                lr=args.learning_rate,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    if args.start_epoch > 0:
        optimizer.load_state_dict(saved_state_dict['optimizer'])
        print('========Load Optimizer', args.restore_from)

    optimizer.zero_grad()

    total_iters = args.epochs * len(trainloader)
    for epoch in range(args.start_epoch, args.epochs):
        model.train()
        for i_iter, batch in enumerate(trainloader):
            i_iter += len(trainloader) * epoch
            #lr = adjust_learning_rate(optimizer, i_iter, total_iters)
            lr = adjust_learning_rate_parsing(optimizer, epoch)

            images, labels, _ = batch
            labels = labels.long().cuda(non_blocking=True)
            preds = model(images)

            loss = criterion(preds, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if i_iter % 100 == 0:
                writer.add_scalar('learning_rate', lr, i_iter)
                writer.add_scalar('loss', loss.data.cpu().numpy(), i_iter)

            print('epoch = {}, iter = {} of {} completed,lr={}, loss = {}'.
                  format(epoch, i_iter, total_iters, lr,
                         loss.data.cpu().numpy()))
        if epoch % 2 == 0 or epoch == args.epochs:
            time.sleep(10)
            save_checkpoint(model, epoch, optimizer)

        # parsing_preds, scales, centers = valid(model, valloader, input_size,  num_samples, len(gpus))

        # mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size)

        # print(mIoU)
        # writer.add_scalars('mIoU', mIoU, epoch)
    time.sleep(10)
    save_checkpoint(model, epoch, optimizer)
    end = timeit.default_timer()
    print(end - start, 'seconds')
Example #5
0
def main():
    """Create the model and start the training."""

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)
    f = open('./tlip.txt','w')
    f.write(str(args)+'\n')

    gpus = [int(i) for i in args.gpu.split(',')]
    if not args.gpu == 'None':
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    h, w = map(int, args.input_size.split(','))
    input_size = [h, w]

    cudnn.enabled = True
    #cudnn.benchmark = False
    torch.backends.cudnn.deterministic = False
    torch.backends.cudnn.enabled = True
 

    deeplab = EEN(num_classes=args.num_classes)

    # Initialize the model with resnet101-imagenet.pth
    saved_state_dict = torch.load(args.restore_from)
    new_params = deeplab.state_dict().copy()
    for i in saved_state_dict:
        i_parts = i.split('.')
        if not i_parts[0] == 'fc':
            new_params['.'.join(i_parts[0:])] = saved_state_dict[i]
    deeplab.load_state_dict(new_params)
    
    # Initialize the model with cihp_11.pth
    """args.start_epoch = 11
    res = './scihp/cihp_11.pth'
    state_dict = deeplab.state_dict().copy()
    state_dict_old = torch.load(res)
    for key, nkey in zip(state_dict_old.keys(), state_dict.keys()):
        if key != nkey:
            state_dict[key[7:]] = deepcopy(state_dict_old[key])
        else:
            state_dict[key] = deepcopy(state_dict_old[key])
    deeplab.load_state_dict(state_dict)"""
    #########
   
    model = DataParallelModel(deeplab)
    model.cuda()

    criterion = CriterionAll()
    criterion = DataParallelCriterion(criterion)
    criterion.cuda()

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])

    trainloader = data.DataLoader(HumanDataSet(args.data_dir, args.dataset, crop_size=input_size, transform=transform),
                                  batch_size=args.batch_size * len(gpus), shuffle=True, num_workers=2,
                                  pin_memory=True)

    optimizer = optim.SGD(
        model.parameters(),
        lr=args.learning_rate,
        momentum=args.momentum,
        weight_decay=args.weight_decay
    )
    optimizer.zero_grad()

    total_iters = args.epochs * len(trainloader)
    print(len(trainloader))

    for epoch in range(args.start_epoch, args.epochs):
        start_time = timeit.default_timer()
        model.train()        
        for i_iter, batch in enumerate(trainloader):
            i_iter += len(trainloader) * epoch
            lr = adjust_learning_rate(optimizer, i_iter, total_iters)

            images, labels, edges, _ = batch
            #pdb.set_trace()
            labels = labels.long().cuda(non_blocking=True)
            edges = edges.long().cuda(non_blocking=True)

            preds = model(images)
            #pdb.set_trace()
            loss = criterion(preds, [labels, edges])
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if i_iter % 100 ==0:
               print('iter = {} of {} completed, loss = {}'.format(i_iter, total_iters, loss.data.cpu().numpy()))
               f.write('iter = '+str(i_iter)+', loss = '+str(loss.data.cpu().numpy())+', lr = '+str(lr)+'\n')
        torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'lip_' + str(epoch) + '.pth'))
        end_time = timeit.default_timer()
        print('epoch: ', epoch ,', the time is: ',(end_time-start_time))


    end = timeit.default_timer()
    print(end - start, 'seconds')
    f.close()
def main():
    """Create the model and start the training."""

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    writer = SummaryWriter(args.snapshot_dir)
    gpus = [int(i) for i in args.gpu.split(',')]
    if not args.gpu == 'None':
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    h, w = map(int, args.input_size.split(','))
    input_size = [h, w]

    cudnn.enabled = True
    # cudnn related setting
    cudnn.benchmark = True
    torch.backends.cudnn.deterministic = False
    torch.backends.cudnn.enabled = True
 

    deeplab = Res_Deeplab(num_classes=args.num_classes)
    print(type(deeplab))
    

    # dump_input = torch.rand((args.batch_size, 3, input_size[0], input_size[1]))
    # writer.add_graph(deeplab.cuda(), dump_input.cuda(), verbose=False)


    """
    HOW DOES IT LOAD ONLY RESNET101 AND NOT THE RSTE OF THE NET ?
    """
    # UNCOMMENT THE FOLLOWING COMMENTARY TO INITIALYZE THE WEIGHTS
    
    # Load resnet101 weights trained on imagenet and copy it in new_params
    saved_state_dict = torch.load(args.restore_from)
    new_params = deeplab.state_dict().copy()

    # CHECK IF WEIGHTS BELONG OR NOT TO THE MODEL
    # belongs = 0
    # doesnt_b = 0
    # for key in saved_state_dict:
    #     if key in new_params:
    #         belongs+=1 
    #         print('key=', key)
    #     else:
    #         doesnt_b+=1
    #         # print('key=', key)
    # print('belongs = ', belongs, 'doesnt_b=', doesnt_b)
    # print('res101 len',len(saved_state_dict))
    # print('new param len',len(new_params))


    for i in saved_state_dict:
        i_parts = i.split('.')
        # print('i_parts:', i_parts)
        # exp : i_parts: ['layer2', '3', 'bn2', 'running_mean']

        # The deeplab weight modules  have diff name than args.restore_from weight modules
        if i_parts[0] == 'module' and not i_parts[1] == 'fc' :
            if new_params['.'.join(i_parts[1:])].size() == saved_state_dict[i].size():
                new_params['.'.join(i_parts[1:])] = saved_state_dict[i]
        else:
            if not i_parts[0] == 'fc':
                if new_params['.'.join(i_parts[0:])].size() == saved_state_dict[i].size():
                    new_params['.'.join(i_parts[0:])] = saved_state_dict[i]
 
    deeplab.load_state_dict(new_params)
    
    # UNCOMMENT UNTIL HERE

    model = DataParallelModel(deeplab)
    model.cuda()

    criterion = CriterionAll()
    criterion = DataParallelCriterion(criterion)
    criterion.cuda()

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])

    trainloader = data.DataLoader(cartoonDataSet(args.data_dir, args.dataset, crop_size=input_size, transform=transform),
                                  batch_size=args.batch_size * len(gpus), shuffle=True, num_workers=8,
                                  pin_memory=True)

    #mIoU for Val set
    val_dataset = cartoonDataSet(args.data_dir, 'val', crop_size=input_size, transform=transform)
    numVal_samples = len(val_dataset)
    
    valloader = data.DataLoader(val_dataset, batch_size=args.batch_size * len(gpus),
                                shuffle=False, pin_memory=True)

    #mIoU for trainTest set
    trainTest_dataset = cartoonDataSet(args.data_dir, 'trainTest', crop_size=input_size, transform=transform)
    numTest_samples = len(trainTest_dataset)
    
    testloader = data.DataLoader(trainTest_dataset, batch_size=args.batch_size * len(gpus),
                                shuffle=False, pin_memory=True)


    optimizer = optim.SGD(
        model.parameters(),
        lr=args.learning_rate,
        momentum=args.momentum,
        weight_decay=args.weight_decay
    )
    optimizer.zero_grad()
    # valBatch_idx = 0
    total_iters = args.epochs * len(trainloader)
    for epoch in range(args.start_epoch, args.epochs):
        model.train()
        for i_iter, batch in enumerate(trainloader):
            i_iter += len(trainloader) * epoch
            lr = adjust_learning_rate(optimizer, i_iter, total_iters)
            images, labels, _, _ = batch
            labels = labels.long().cuda(non_blocking=True)
            preds = model(images)
            # print('preds size in batch', len(preds))
            # print('Size of Segmentation1 tensor output:',preds[0][0].size())
            # print('Segmentation2 tensor output:',preds[0][-1].size())
            # print('Size of Edge tensor output:',preds[1][-1].size())
            loss = criterion(preds, [labels])
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if i_iter % 100 == 0:
                writer.add_scalar('learning_rate', lr, i_iter)
                writer.add_scalar('loss', loss.data.cpu().numpy(), i_iter)

            if i_iter % 500 == 0:
                # print('In iter%500 Size of Segmentation2 GT: ', labels.size())
                # print('In iter%500 Size of edges GT: ', edges.size())
                images_inv = inv_preprocess(images, args.save_num_images)
                # print(labels[0])
                labels_colors = decode_parsing(labels, args.save_num_images, args.num_classes, is_pred=False)
               
                # if isinstance(preds, list):
                #     print(len(preds))
                #     preds = preds[0]
                
                # val_images, _ = valloader[valBatch_idx]
                # valBatch_idx += 1
                # val_sampler = torch.utils.data.RandomSampler(val_dataset,replacement=True, num_samples=args.batch_size * len(gpus))
                # sample_valloader = data.DataLoader(val_dataset, batch_size=args.batch_size * len(gpus),
                #                 shuffle=False, sampler=val_sampler , pin_memory=True)
                # val_images, _ = sample_valloader
                # preds_val = model(val_images)

                # With multiple GPU, preds return a list, therefore we extract the tensor in the list
                if len(gpus)>1:
                    preds= preds[0]
                    # preds_val = preds_val[0]

                
                

                # print('In iter%500 Size of Segmentation2 tensor output:',preds[0][0][-1].size())
                # preds[0][-1] cause model returns [[seg1, seg2], [edge]]
                preds_colors = decode_parsing(preds[0][-1], args.save_num_images, args.num_classes, is_pred=True)
                # preds_val_colors = decode_parsing(preds_val[0][-1], args.save_num_images, args.num_classes, is_pred=True)
                # print("preds type:",type(preds)) #list
                # print("preds shape:", len(preds)) #2
                # hello = preds[0][-1]
                # print("preds type [0][-1]:",type(hello)) #<class 'torch.Tensor'>
                # print("preds len [0][-1]:", len(hello)) #12
                # print("preds len [0][-1]:", hello.shape)#torch.Size([12, 8, 96, 96])
                # print("preds color's type:",type(preds_colors))#torch.tensor
                # print("preds color's shape:",preds_colors.shape) #([2,3,96,96])

                # print('IMAGE', images_inv.size())
                img = vutils.make_grid(images_inv, normalize=False, scale_each=True)
                lab = vutils.make_grid(labels_colors, normalize=False, scale_each=True)
                pred = vutils.make_grid(preds_colors, normalize=False, scale_each=True)
                
                
                # print("preD type:",type(pred)) #<class 'torch.Tensor'>
                # print("preD len:", len(pred))# 3
                # print("preD shape:", pred.shape)#torch.Size([3, 100, 198])

                # 1=head red, 2=body green , 3=left_arm yellow, 4=right_arm blue, 5=left_leg pink
                # 6=right_leg skuBlue, 7=tail grey

                writer.add_image('Images/', img, i_iter)
                writer.add_image('Labels/', lab, i_iter)
                writer.add_image('Preds/', pred, i_iter)
                
               
            print('iter = {} of {} completed, loss = {}'.format(i_iter, total_iters, loss.data.cpu().numpy()))
        
        print('end epoch:', epoch)
        
        if epoch%99 == 0:
            torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'DFPnet_epoch_' + str(epoch) + '.pth'))
        
        if epoch%5 == 0 and epoch<500:
            # mIou for Val set
            parsing_preds, scales, centers = valid(model, valloader, input_size,  numVal_samples, len(gpus))
            '''
            Insert a sample of prediction of a val image on tensorboard
            '''
            # generqte a rand number between len(parsing_preds)
            sample = random.randint(0, len(parsing_preds)-1)
            
            #loader resize and convert to tensor the image
            loader = transforms.Compose([
                transforms.Resize(input_size),
                transforms.ToTensor()
            ])

            # get val segmentation path and open the file
            list_path = os.path.join(args.data_dir, 'val' + '_id.txt')
            val_id = [i_id.strip() for i_id in open(list_path)]
            gt_path = os.path.join(args.data_dir, 'val' + '_segmentations', val_id[sample] + '.png')
            gt =Image.open(gt_path)
            gt = loader(gt)
            #put gt back from 0 to 255
            gt = (gt*255).int()
            # convert pred from ndarray to PIL image then to tensor
            display_preds = Image.fromarray(parsing_preds[sample])
            tensor_display_preds = transforms.ToTensor()(display_preds)
            #put gt back from 0 to 255
            tensor_display_preds = (tensor_display_preds*255).int()
            # color them 
            val_preds_colors = decode_parsing(tensor_display_preds, num_images=1, num_classes=args.num_classes, is_pred=False)
            gt_color = decode_parsing(gt, num_images=1, num_classes=args.num_classes, is_pred=False)
            # put in grid 
            pred_val = vutils.make_grid(val_preds_colors, normalize=False, scale_each=True)
            gt_val = vutils.make_grid(gt_color, normalize=False, scale_each=True)
            writer.add_image('Preds_val/', pred_val, epoch)
            writer.add_image('Gt_val/', gt_val, epoch)

            mIoUval = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size, 'val')

            print('For val set', mIoUval)
            writer.add_scalars('mIoUval', mIoUval, epoch)

            # mIou for trainTest set
            parsing_preds, scales, centers = valid(model, testloader, input_size,  numTest_samples, len(gpus))

            mIoUtest = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size, 'trainTest')

            print('For trainTest set', mIoUtest)
            writer.add_scalars('mIoUtest', mIoUtest, epoch)

        else:
            if epoch%20 == 0 and epoch>=500:
                # mIou for Val set
                parsing_preds, scales, centers = valid(model, valloader, input_size,  numVal_samples, len(gpus))
                '''
                Insert a sample of prediction of a val image on tensorboard
                '''
                # generqte a rand number between len(parsing_preds)
                sample = random.randint(0, len(parsing_preds)-1)
                
                #loader resize and convert to tensor the image
                loader = transforms.Compose([
                    transforms.Resize(input_size),
                    transforms.ToTensor()
                ])

                # get val segmentation path and open the file
                list_path = os.path.join(args.data_dir, 'val' + '_id.txt')
                val_id = [i_id.strip() for i_id in open(list_path)]
                gt_path = os.path.join(args.data_dir, 'val' + '_segmentations', val_id[sample] + '.png')
                gt =Image.open(gt_path)
                gt = loader(gt)
                #put gt back from 0 to 255
                gt = (gt*255).int()
                # convert pred from ndarray to PIL image then to tensor
                display_preds = Image.fromarray(parsing_preds[sample])
                tensor_display_preds = transforms.ToTensor()(display_preds)
                #put gt back from 0 to 255
                tensor_display_preds = (tensor_display_preds*255).int()
                # color them 
                val_preds_colors = decode_parsing(tensor_display_preds, num_images=1, num_classes=args.num_classes, is_pred=False)
                gt_color = decode_parsing(gt, num_images=1, num_classes=args.num_classes, is_pred=False)
                # put in grid 
                pred_val = vutils.make_grid(val_preds_colors, normalize=False, scale_each=True)
                gt_val = vutils.make_grid(gt_color, normalize=False, scale_each=True)
                writer.add_image('Preds_val/', pred_val, epoch)
                writer.add_image('Gt_val/', gt_val, epoch)

                mIoUval = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size, 'val')

                print('For val set', mIoUval)
                writer.add_scalars('mIoUval', mIoUval, epoch)

                # mIou for trainTest set
                parsing_preds, scales, centers = valid(model, testloader, input_size,  numTest_samples, len(gpus))

                mIoUtest = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size, 'trainTest')

                print('For trainTest set', mIoUtest)
                writer.add_scalars('mIoUtest', mIoUtest, epoch)

    end = timeit.default_timer()
    print(end - start, 'seconds')
def main():
    args = get_arguments()
    print(args)

    start_epoch = 0
    cycle_n = 0

    if not os.path.exists(args.log_dir):
        os.makedirs(args.log_dir)
    with open(os.path.join(args.log_dir, 'args.json'), 'w') as opt_file:
        json.dump(vars(args), opt_file)

    gpus = [int(i) for i in args.gpu.split(',')]
    if not args.gpu == 'None':
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    input_size = list(map(int, args.input_size.split(',')))

    cudnn.enabled = True
    cudnn.benchmark = True

    # Model Initialization
    AugmentCE2P = networks.init_model(args.arch,
                                      num_classes=args.num_classes,
                                      pretrained=args.imagenet_pretrain)
    model = DataParallelModel(AugmentCE2P)
    model.cuda()

    IMAGE_MEAN = AugmentCE2P.mean
    IMAGE_STD = AugmentCE2P.std
    INPUT_SPACE = AugmentCE2P.input_space
    print('image mean: {}'.format(IMAGE_MEAN))
    print('image std: {}'.format(IMAGE_STD))
    print('input space:{}'.format(INPUT_SPACE))

    restore_from = args.model_restore
    if os.path.exists(restore_from):
        print('Resume training from {}'.format(restore_from))
        checkpoint = torch.load(restore_from)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']

    SCHP_AugmentCE2P = networks.init_model(args.arch,
                                           num_classes=args.num_classes,
                                           pretrained=args.imagenet_pretrain)
    schp_model = DataParallelModel(SCHP_AugmentCE2P)
    schp_model.cuda()

    if os.path.exists(args.schp_restore):
        print('Resuming schp checkpoint from {}'.format(args.schp_restore))
        schp_checkpoint = torch.load(args.schp_restore)
        schp_model_state_dict = schp_checkpoint['state_dict']
        cycle_n = schp_checkpoint['cycle_n']
        schp_model.load_state_dict(schp_model_state_dict)

    # Loss Function
    criterion = CriterionAll(lambda_1=args.lambda_s,
                             lambda_2=args.lambda_e,
                             lambda_3=args.lambda_c,
                             num_classes=args.num_classes)
    criterion = DataParallelCriterion(criterion)
    criterion.cuda()

    # Data Loader
    if INPUT_SPACE == 'BGR':
        print('BGR Transformation')
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=IMAGE_MEAN, std=IMAGE_STD),
        ])

    elif INPUT_SPACE == 'RGB':
        print('RGB Transformation')
        transform = transforms.Compose([
            transforms.ToTensor(),
            BGR2RGB_transform(),
            transforms.Normalize(mean=IMAGE_MEAN, std=IMAGE_STD),
        ])

    train_dataset = LIPDataSet(args.data_dir,
                               args.split_name,
                               crop_size=input_size,
                               transform=transform)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size * len(gpus),
                                   num_workers=16,
                                   shuffle=True,
                                   pin_memory=True,
                                   drop_last=True)
    print('Total training samples: {}'.format(len(train_dataset)))

    # Optimizer Initialization
    optimizer = optim.SGD(model.parameters(),
                          lr=args.learning_rate,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    lr_scheduler = SGDRScheduler(optimizer,
                                 total_epoch=args.epochs,
                                 eta_min=args.learning_rate / 100,
                                 warmup_epoch=10,
                                 start_cyclical=args.schp_start,
                                 cyclical_base_lr=args.learning_rate / 2,
                                 cyclical_epoch=args.cycle_epochs)

    total_iters = args.epochs * len(train_loader)
    start = timeit.default_timer()
    for epoch in range(start_epoch, args.epochs):
        lr_scheduler.step(epoch=epoch)
        lr = lr_scheduler.get_lr()[0]

        model.train()
        for i_iter, batch in enumerate(train_loader):
            i_iter += len(train_loader) * epoch

            images, labels, _ = batch
            labels = labels.cuda(non_blocking=True)

            edges = generate_edge_tensor(labels)
            labels = labels.type(torch.cuda.LongTensor)
            edges = edges.type(torch.cuda.LongTensor)

            preds = model(images)

            # Online Self Correction Cycle with Label Refinement
            if cycle_n >= 1:
                with torch.no_grad():
                    soft_preds = schp_model(images)
                    soft_parsing = []
                    soft_edge = []
                    for soft_pred in soft_preds:
                        soft_parsing.append(soft_pred[0][-1])
                        soft_edge.append(soft_pred[1][-1])
                    soft_preds = torch.cat(soft_parsing, dim=0)
                    soft_edges = torch.cat(soft_edge, dim=0)
            else:
                soft_preds = None
                soft_edges = None

            loss = criterion(preds, [labels, edges, soft_preds, soft_edges],
                             cycle_n)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if i_iter % 100 == 0:
                print('iter = {} of {} completed, lr = {}, loss = {}'.format(
                    i_iter, total_iters, lr,
                    loss.data.cpu().numpy()))
        if (epoch + 1) % (args.eval_epochs) == 0:
            schp.save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'state_dict': model.state_dict(),
                },
                False,
                args.log_dir,
                filename='checkpoint_{}.pth.tar'.format(epoch + 1))

        # Self Correction Cycle with Model Aggregation
        if (epoch + 1) >= args.schp_start and (
                epoch + 1 - args.schp_start) % args.cycle_epochs == 0:
            print('Self-correction cycle number {}'.format(cycle_n))
            schp.moving_average(schp_model, model, 1.0 / (cycle_n + 1))
            cycle_n += 1
            schp.bn_re_estimate(train_loader, schp_model)
            schp.save_schp_checkpoint(
                {
                    'state_dict': schp_model.state_dict(),
                    'cycle_n': cycle_n,
                },
                False,
                args.log_dir,
                filename='schp_{}_checkpoint.pth.tar'.format(cycle_n))

        torch.cuda.empty_cache()
        end = timeit.default_timer()
        print('epoch = {} of {} completed using {} s'.format(
            epoch, args.epochs, (end - start) / (epoch - start_epoch + 1)))

    end = timeit.default_timer()
    print('Training Finished in {} seconds'.format(end - start))