Example #1
0
def run_iter(model,
             result_row,
             i_iter,
             i_cv,
             args,
             config,
             test_generator,
             n_bins=10):
    logger = logging.getLogger()
    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    suffix = f'-mu={config.TRUE.mu:1.2f}_rescale={config.TRUE.rescale}'
    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(
        *config.TRUE, n_samples=config.N_TESTING_SAMPLES)
    # PLOT SUMMARIES
    # evaluate_summary_computer(model, X_test, y_test, w_test, n_bins=n_bins, prefix='', suffix=suffix, directory=iter_directory)

    # logger.info('Set up NLL computer')
    # compute_summaries = ClassifierSummaryComputer(model, n_bins=n_bins)
    # compute_nll = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config)
    compute_nll = NLL(X_test, w_test, i_cv, args, config=config, n_bins=n_bins)
    # NLL PLOTS
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    # MINIMIZE NLL
    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.CALIBRATED,
                              config.CALIBRATED_ERROR)
    result_row.update(evaluate_minuit(minimizer, config.TRUE))
    return result_row.copy()
Example #2
0
def run_iter(i_cv, i_iter, config, seed, directory):
    logger = logging.getLogger()
    logger.info('-' * 45)
    logger.info(f'iter : {i_iter}')
    result_row = dict(i_cv=i_cv, i=i_iter)
    iter_directory = os.path.join(directory, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)

    logger.info(f"True Parameters   = {config.TRUE}")
    suffix = f'-mu={config.TRUE.mu:1.2f}_r={config.TRUE.r}_lambda={config.TRUE.lam}'
    generator = Generator(seed)  # test_generator
    data, label = generator.sample_event(*config.TRUE,
                                         size=config.N_TESTING_SAMPLES)
    result_row['n_test_samples'] = config.N_TESTING_SAMPLES
    debug_label(label)

    compute_nll = lambda r, lam, mu: generator.nll(data, r, lam, mu)
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.CALIBRATED,
                              config.CALIBRATED_ERROR)
    minimizer.precision = None
    result_row.update(
        evaluate_minuit(minimizer, config.TRUE, iter_directory, suffix=suffix))
    return result_row
Example #3
0
def run_estimation_iter(model,
                        result_row,
                        i_iter,
                        config,
                        valid_generator,
                        test_generator,
                        calibs,
                        n_bins=N_BINS,
                        tolerance=10):
    logger = logging.getLogger()
    logger.info('-' * 45)
    logger.info(f'iter : {i_iter}')
    flush(logger)

    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    result_row['n_test_samples'] = test_generator.n_samples
    suffix = config.get_suffix()

    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(
        *config.TRUE, n_samples=config.N_TESTING_SAMPLES, no_grad=True)
    # PLOT SUMMARIES
    evaluate_summary_computer(model,
                              X_test,
                              y_test,
                              w_test,
                              n_bins=n_bins,
                              prefix='',
                              suffix=suffix,
                              directory=iter_directory)

    # CALIBRATION
    config = calibrates(calibs, config, X_test, w_test)
    for name, value in config.CALIBRATED.items():
        result_row[name + "_calib"] = value
    for name, value in config.CALIBRATED_ERROR.items():
        result_row[name + "_calib_error"] = value

    logger.info('Set up NLL computer')
    compute_summaries = model.summary_computer(n_bins=n_bins)
    compute_nll = NLLComputer(compute_summaries,
                              valid_generator,
                              X_test,
                              w_test,
                              config=config)
    # NLL PLOTS
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    # MINIMIZE NLL
    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll,
                              config.CALIBRATED,
                              config.CALIBRATED_ERROR,
                              tolerance=tolerance)
    result_row.update(
        evaluate_minuit(minimizer, config.TRUE, iter_directory, suffix=suffix))
    return result_row.copy()
Example #4
0
def run_estimation_iter(model, result_row, i_iter, config, valid_generator, test_generator, n_bins=N_BINS):
    logger = logging.getLogger()
    logger.info('-'*45)
    logger.info(f'iter : {i_iter}')
    flush(logger)

    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    result_row['n_test_samples'] = config.N_TESTING_SAMPLES
    suffix = f'-mu={config.TRUE.mu:1.2f}_r={config.TRUE.r}_lambda={config.TRUE.lam}'

    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES, no_grad=True)
    # PLOT SUMMARIES
    evaluate_summary_computer(model, X_test, y_test, w_test, n_bins=n_bins, prefix='', suffix=suffix, directory=iter_directory)

    logger.info('Set up NLL computer')
    compute_summaries = model.summary_computer(n_bins=n_bins)
    compute_nll = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config)
    # NLL PLOTS
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    # MINIMIZE NLL
    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.CALIBRATED, config.CALIBRATED_ERROR)
    result_row.update(evaluate_minuit(minimizer, config.TRUE, iter_directory, suffix=suffix))
    return result_row.copy()
Example #5
0
def run_iter(compute_summaries, i_cv, i_iter, config, valid_generator,
             test_generator, directory):
    logger = logging.getLogger()
    result_row = dict(i_cv=i_cv, i=i_iter)
    iter_directory = os.path.join(directory, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)

    logger.info(f"True Parameters   = {config.TRUE}")
    suffix = f'-mu={config.TRUE.mu:1.2f}_rescale={config.TRUE.rescale}'
    X_test, y_test, w_test = test_generator.generate(
        *config.TRUE, n_samples=config.N_TESTING_SAMPLES)
    debug_label(y_test)

    compute_nll = NLLComputer(compute_summaries,
                              valid_generator,
                              X_test,
                              w_test,
                              config=config)
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.CALIBRATED,
                              config.CALIBRATED_ERROR)
    result_row.update(evaluate_minuit(minimizer, config.TRUE))
    return result_row
def run_iter(i_cv, i_iter, config, valid_generator, test_generator, directory):
    logger = logging.getLogger()
    result_row = dict(i_cv=i_cv, i=i_iter)
    iter_directory = os.path.join(directory, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)

    logger.info(f"True Parameters   = {config.TRUE}")
    suffix = f'-mu={config.TRUE.mu:1.2f}_tes={config.TRUE.tes}_jes={config.TRUE.jes}_les={config.TRUE.les}'
    # suffix += f'_nasty_bkg={config.TRUE.nasty_bkg}_sigma_soft={config.TRUE.sigma_soft}'
    # TODO : Remove
    logger.info(f"Calib Parameters   = {config.CALIBRATED}")
    X_test, y_test, w_test = test_generator.generate(
        *config.CALIBRATED, n_samples=config.N_TESTING_SAMPLES)
    logger.info(
        f" s = {w_test[y_test==1].sum()}  || b = {w_test[y_test==0].sum()} ")
    # TODO : END
    X_test, y_test, w_test = test_generator.generate(
        *config.TRUE, n_samples=config.N_TESTING_SAMPLES)
    debug_label(y_test)

    # TODO : Remove
    logger.info(
        f" s = {w_test[y_test==1].sum()}  || b = {w_test[y_test==0].sum()} ")
    # TODO : END

    compute_nll = LabelNLL(valid_generator, y_test, w_test, config=config)
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.CALIBRATED,
                              config.CALIBRATED_ERROR)
    result_row.update(evaluate_minuit(minimizer, config.TRUE))
    return result_row
Example #7
0
def run_iter(model,
             result_row,
             i_iter,
             config,
             valid_generator,
             test_generator,
             n_bins=10):
    logger = logging.getLogger()
    logger.info('-' * 45)
    logger.info(f'iter : {i_iter}')
    flush(logger)

    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    result_row['n_test_samples'] = config.N_TESTING_SAMPLES
    suffix = f'-mu={config.TRUE.mu:1.2f}_rescale={config.TRUE.rescale}'

    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(
        *config.TRUE, n_samples=config.N_TESTING_SAMPLES)
    # PLOT SUMMARIES
    evaluate_summary_computer(model,
                              X_test,
                              y_test,
                              w_test,
                              n_bins=n_bins,
                              prefix='',
                              suffix=suffix,
                              directory=iter_directory)

    logger.info('Set up NLL computer')
    compute_summaries = lambda X, w: model.compute_summaries(
        X, w, n_bins=n_bins)
    compute_nll = NLLComputer(compute_summaries,
                              valid_generator,
                              X_test,
                              w_test,
                              config=config)
    # NLL PLOTS
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    # MEASURE STAT/SYST VARIANCE
    logger.info('MEASURE STAT/SYST VARIANCE')
    conditional_results = make_conditional_estimation(compute_nll, config)
    fname = os.path.join(iter_directory, "no_nuisance.csv")
    conditional_estimate = pd.DataFrame(conditional_results)
    conditional_estimate['i'] = i_iter
    conditional_estimate.to_csv(fname)

    # MINIMIZE NLL
    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.CALIBRATED,
                              config.CALIBRATED_ERROR)
    result_row.update(evaluate_minuit(minimizer, config.TRUE))
    return result_row.copy(), conditional_estimate
def make_conditional_estimation(compute_nll, config):
    results = []
    for j, nuisance_parameters in enumerate(config.iter_nuisance()):
        compute_nll_no_nuisance = lambda mu : compute_nll(*nuisance_parameters, mu)
        minimizer = get_minimizer_no_nuisance(compute_nll_no_nuisance, config.CALIBRATED, config.CALIBRATED_ERROR)
        results_row = evaluate_minuit(minimizer, config.TRUE, do_hesse=False)
        results_row['j'] = j
        for name, value in zip(config.CALIBRATED.nuisance_parameters_names, nuisance_parameters):
            results_row[name] = value
            results_row[name+_TRUTH] = config.TRUE[name]
        results.append(results_row)
    return results
def main():
    # BASIC SETUP
    logger = set_logger()
    args = GB_parse_args(main_description="Training launcher for Gradient boosting on S3D2 benchmark")
    logger.info(args)
    flush(logger)
    # Config
    config = Config()
    config.TRUE = Parameter(r=0.1, lam=2.7, mu=0.1)

    train_generator = Generator(SEED)
    valid_generator = Generator(SEED+1)
    test_generator  = Generator(SEED+2)
    X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES)

    # for nuisance in p(nuisance | data)
    nuisance_param_sample = [param_generator().nuisance_parameters for _ in range(25)]
    average_list = []
    variance_list = []
    all_results = []
    for nuisance_params in nuisance_param_sample:
        logger.info(f"nuisance_params = {nuisance_params}")
        estimator_values = []
        results = {name : value for name, value in zip(config.TRUE.nuisance_parameters_names, nuisance_params)}
        for i_cv in range(N_ITER):
            clf = build_model(args, i_cv)
            parameters = Parameter(*nuisance_params, config.CALIBRATED.interest_parameters)
            print(parameters)
            n_samples = config.N_TRAINING_SAMPLES
            X_train, y_train, w_train = train_generator.generate(*parameters, n_samples=n_samples)
            logger.info(f"Training {clf.full_name}")
            # TODO : is it OK to provide w_train to the classifier or useless ?
            clf.fit(X_train, y_train, w_train)
            compute_summaries = ClassifierSummaryComputer(clf, n_bins=10)
            nll_computer = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config)
            compute_nll = lambda mu : nll_computer(*nuisance_params, mu)
            minimizer = get_minimizer(compute_nll)
            results.update(evaluate_minuit(minimizer, [config.TRUE.interest_parameters]))
            all_results.append(results.copy())
            # TODO : Add results to some csv
            estimator_values.append(results['mu'])
        average_list.append(np.mean(estimator_values))
        variance_list.append(np.var(estimator_values))

    logger.info(f"average_list {average_list}")
    logger.info(f"variance_list {variance_list}")
    v_stat = np.mean(variance_list)
    v_syst = np.var(average_list)
    v_total = v_stat + v_syst
    logger.info(f"V_stat = {v_stat}")
    logger.info(f"V_syst = {v_syst}")
    logger.info(f"V_total = {v_total}")
def run_iter(model, result_row, i_iter, config, valid_generator, test_generator, calib_rescale, n_bins=10):
    logger = logging.getLogger()
    logger.info('-'*45)
    logger.info(f'iter : {i_iter}')
    flush(logger)

    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    result_row['n_test_samples'] = config.N_TESTING_SAMPLES
    suffix = f'-mu={config.TRUE.mu:1.2f}_rescale={config.TRUE.rescale}'

    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES)
    # PLOT SUMMARIES
    evaluate_summary_computer(model, X_test, y_test, w_test, n_bins=n_bins, prefix='', suffix=suffix, directory=iter_directory)

    # CALIBRATION
    rescale_mean, rescale_sigma = calib_rescale.predict(X_test, w_test)
    logger.info('rescale  = {} =vs= {} +/- {}'.format(config.TRUE.rescale, rescale_mean, rescale_sigma) )
    config.CALIBRATED = Parameter(rescale_mean, config.CALIBRATED.interest_parameters)
    config.CALIBRATED_ERROR = Parameter(rescale_sigma, config.CALIBRATED_ERROR.interest_parameters)
    for name, value in config.CALIBRATED.items():
        result_row[name+"_calib"] = value
    for name, value in config.CALIBRATED_ERROR.items():
        result_row[name+"_calib_error"] = value

    logger.info('Set up NLL computer')
    compute_summaries = ClassifierSummaryComputer(model, n_bins=n_bins)
    compute_nll = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config)
    # NLL PLOTS
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    # MEASURE STAT/SYST VARIANCE
    logger.info('MEASURE STAT/SYST VARIANCE')
    conditional_results = make_conditional_estimation(compute_nll, config)
    fname = os.path.join(iter_directory, "no_nuisance.csv")
    conditional_estimate = pd.DataFrame(conditional_results)
    conditional_estimate['i'] = i_iter
    conditional_estimate.to_csv(fname)

    # MINIMIZE NLL
    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.CALIBRATED, config.CALIBRATED_ERROR)
    result_row.update(evaluate_minuit(minimizer, config.TRUE))
    return result_row.copy(), conditional_estimate
def do_iter(config, model, i_iter, valid_generator, test_generator, root_dir, n_bins=N_BINS):
    logger = logging.getLogger()
    directory = os.path.join(root_dir, model.name, f"iter_{i_iter}")
    os.makedirs(directory, exist_ok=True)
    logger.info(f"saving dir = {directory}")

    logger.info('Generate testing data')
    X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES, no_grad=True)

    logger.info('Set up NLL computer')
    compute_summaries = model.summary_computer(n_bins=n_bins)
    compute_nll = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config)

    basic_check(compute_nll, config)
    basic_contourplot(compute_nll, config, directory)

    # MINIMIZE NLL
    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.CALIBRATED, config.CALIBRATED_ERROR)
    some_dict =  evaluate_minuit(minimizer, config.TRUE, directory, suffix="")

    # FOCUSED contour plot
    nll_func = lambda mu, tes : compute_nll(tes, config.TRUE.jes, config.TRUE.les, mu)
    x = minimizer.values[3]
    y = minimizer.values[0]
    x_err = minimizer.errors[3]
    y_err = minimizer.errors[0]
    focused_contour(x, y, x_err, y_err, nll_func, directory, xlabel="mu", ylabel='tes')

    nll_func = lambda mu, jes : compute_nll(config.TRUE.tes, jes, config.TRUE.les, mu)
    x = minimizer.values[3]
    y = minimizer.values[1]
    x_err = minimizer.errors[3]
    y_err = minimizer.errors[1]
    focused_contour(x, y, x_err, y_err, nll_func, directory, xlabel="mu", ylabel='jes')

    nll_func = lambda mu, les : compute_nll(config.TRUE.tes, config.TRUE.jes, les, mu)
    x = minimizer.values[3]
    y = minimizer.values[2]
    x_err = minimizer.errors[3]
    y_err = minimizer.errors[2]
    focused_contour(x, y, x_err, y_err, nll_func, directory, xlabel="mu", ylabel='les')
Example #12
0
def run_estimation_iter(model, result_row, i_iter, config, valid_generator, test_generator,  calib_r, calib_lam, n_bins=10):
    logger = logging.getLogger()
    logger.info('-'*45)
    logger.info(f'iter : {i_iter}')
    flush(logger)

    iter_directory = os.path.join(model.results_path, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)
    result_row['i'] = i_iter
    result_row['n_test_samples'] = config.N_TESTING_SAMPLES
    suffix = f'-mu={config.TRUE.mu:1.2f}_r={config.TRUE.r}_lambda={config.TRUE.lam}'

    logger.info('Generate testing data')
    test_generator.reset()
    X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES)
    # PLOT SUMMARIES
    evaluate_summary_computer(model, X_test, y_test, w_test, n_bins=n_bins, prefix='', suffix=suffix, directory=iter_directory)

    # CALIBRATION
    config = calibrates(calib_r, calib_lam, config, X_test, w_test)
    for name, value in config.FITTED.items():
        result_row[name+"_fitted"] = value
    for name, value in config.FITTED_ERROR.items():
        result_row[name+"_fitted_error"] = value

    logger.info('Set up NLL computer')
    compute_summaries = ClassifierSummaryComputer(model, n_bins=n_bins)
    compute_nll = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config)
    # NLL PLOTS
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    # MINIMIZE NLL
    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.FITTED, config.FITTED_ERROR)
    result_row.update(evaluate_minuit(minimizer, config.TRUE, iter_directory, suffix=suffix))
    return result_row.copy()
Example #13
0
def main():
    # BASIC SETUP
    logger = set_logger()
    args = GB_parse_args(
        main_description=
        "Training launcher for Gradient boosting on S3D2 benchmark")
    logger.info(args)
    flush(logger)
    # Config
    config = Config()
    config.TRUE = Parameter(rescale=0.9, mu=0.1)
    train_generator = Generator(SEED)
    valid_generator = Generator(SEED + 1)
    test_generator = Generator(SEED + 2)
    X_test, y_test, w_test = test_generator.generate(
        *config.TRUE, n_samples=config.N_TESTING_SAMPLES)

    # for nuisance in p(nuisance | data)
    nuisance_param_sample = [
        param_generator().nuisance_parameters for _ in range(25)
    ]
    average_list = []
    variance_list = []
    result_table = []
    for nuisance_params in nuisance_param_sample:
        logger.info(f"nuisance_params = {nuisance_params}")
        estimator_values = []
        for i_cv in range(N_ITER):
            clf = build_model(args, i_cv)
            parameters = Parameter(*nuisance_params,
                                   config.CALIBRATED.interest_parameters)
            print(parameters)
            n_samples = config.N_TRAINING_SAMPLES
            X_train, y_train, w_train = train_generator.generate(
                *parameters, n_samples=n_samples)
            logger.info(f"Training {clf.full_name}")
            clf.fit(X_train, y_train, w_train)
            compute_summaries = ClassifierSummaryComputer(clf, n_bins=10)
            nll_computer = NLLComputer(compute_summaries,
                                       valid_generator,
                                       X_test,
                                       w_test,
                                       config=config)
            compute_nll = lambda mu: nll_computer(*nuisance_params, mu)
            minimizer = get_minimizer(compute_nll)
            results = evaluate_minuit(minimizer,
                                      [config.TRUE.interest_parameters])
            estimator_values.append(results['mu'])
            results['i_cv'] = i_cv
            results.update(params_to_dict(parameters, suffix='true'))
            result_table.append(results.copy())
        average_list.append(np.mean(estimator_values))
        variance_list.append(np.var(estimator_values))

    model = build_model(args, 0)
    model.set_info(DATA_NAME, BENCHMARK_NAME, 0)
    save_directory = model.results_path
    os.makedirs(save_directory, exist_ok=True)
    result_table = pd.DataFrame(result_table)
    result_table.to_csv(os.path.join(save_directory, 'results.csv'))
    logger.info(f"average_list {average_list}")
    logger.info(f"variance_list {variance_list}")
    v_stat = np.mean(variance_list)
    v_syst = np.var(average_list)
    v_total = v_stat + v_syst
    logger.info(f"V_stat = {v_stat}")
    logger.info(f"V_syst = {v_syst}")
    logger.info(f"V_total = {v_total}")
    eval_dict = {"V_stat": v_stat, "V_syst": v_syst, "V_total": v_total}
    eval_path = os.path.join(save_directory, 'info.json')
    with open(eval_path, 'w') as f:
        json.dump(eval_dict, f)
Example #14
0
def run(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}
    result_table = []

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    pb_config = Config()
    seed = config.SEED + i_cv * 5
    train_generator = Synthetic3DGeneratorTorch(seed)
    valid_generator = S3D2(seed + 1)
    test_generator = S3D2(seed + 2)

    # SET MODEL
    logger.info('Set up inferno')
    model = build_model(args, i_cv)
    flush(logger)

    # TRAINING / LOADING
    train_or_load_inferno(model, train_generator, retrain=args.retrain)

    # CHECK TRAINING
    result_row.update(evaluate_neural_net(model))

    logger.info('Generate validation data')
    X_valid, y_valid, w_valid = valid_generator.generate(
        pb_config.CALIBRATED_R,
        pb_config.CALIBRATED_LAMBDA,
        pb_config.CALIBRATED_MU,
        n_samples=pb_config.N_VALIDATION_SAMPLES)

    # MEASUREMENT
    N_BINS = args.n_bins
    compute_summaries = model.compute_summaries
    for mu in pb_config.TRUE_MU_RANGE:
        true_params = Parameter(pb_config.TRUE.r, pb_config.TRUE.lam, mu)
        suffix = f'-mu={true_params.mu:1.2f}_r={true_params.r}_lambda={true_params.lam}'
        logger.info('Generate testing data')
        X_test, y_test, w_test = test_generator.generate(
            *true_params, n_samples=pb_config.N_TESTING_SAMPLES)
        # PLOT SUMMARIES
        evaluate_summary_computer(model,
                                  X_valid,
                                  y_valid,
                                  w_valid,
                                  X_test,
                                  w_test,
                                  n_bins=N_BINS,
                                  prefix='',
                                  suffix=suffix)

        logger.info('Set up NLL computer')
        compute_nll = S3D2NLL(compute_summaries, valid_generator, X_test,
                              w_test)
        # NLL PLOTS
        plot_nll_around_min(compute_nll, true_params, model.path, suffix)

        # MINIMIZE NLL
        logger.info('Prepare minuit minimizer')
        minimizer = get_minimizer(compute_nll, pb_config.CALIBRATED,
                                  pb_config.CALIBRATED_ERROR)
        fmin, params = estimate(minimizer)
        result_row.update(evaluate_minuit(minimizer, fmin, params,
                                          true_params))

        result_table.append(result_row.copy())
    result_table = pd.DataFrame(result_table)

    logger.info('Plot params')
    param_names = pb_config.PARAM_NAMES
    for name in param_names:
        plot_params(name,
                    result_table,
                    title=model.full_name,
                    directory=model.path)

    logger.info('DONE')
    return result_table