Example #1
0
def main():
    args = parse_args()
    if args.affinity != 'disabled':
        nproc_per_node = torch.cuda.device_count()
        affinity = utils.gpu_affinity.set_affinity(args.local_rank,
                                                   nproc_per_node,
                                                   args.affinity)
        print(f'{args.local_rank}: thread affinity: {affinity}')

    # Initialize device and distributed backend
    torch.cuda.set_device(args.local_rank)
    l2_promote()
    device = torch.device('cuda' if args.cuda else 'cpu')
    utils.distributed.init_distributed(args.cuda)

    args.work_dir = utils.exp_utils.build_work_dir_name(
        args.work_dir,
        args.dataset,
        args.append_dataset,
        args.append_time,
    )

    with utils.distributed.sync_workers() as rank:
        if rank == 0:
            create_exp_dir(args.work_dir,
                           scripts_to_save=['train.py', 'mem_transformer.py'],
                           debug=args.debug)

    # Setup logging
    if args.log_all_ranks:
        log_file = f'train_log_rank_{utils.distributed.get_rank()}.log'
    else:
        log_file = args.txtlog_file
    dllog_file = args.dllog_file
    log_file = os.path.join(args.work_dir, log_file)
    dllog_file = os.path.join(args.work_dir, dllog_file)

    if args.debug:
        log_file = os.devnull
        dllog_file = os.devnull

    utils.exp_utils.setup_logging(
        log_all_ranks=args.log_all_ranks,
        filename=log_file,
    )
    utils.exp_utils.setup_dllogger(enabled=True, filename=dllog_file)

    if args.local_batch_size is not None:
        world_size = utils.distributed.get_world_size()
        args.batch_size = world_size * args.local_batch_size
        logging.info(f'--local_batch_size was set, adjusting global batch size'
                     f' to {args.batch_size} (local_batch_size * world_size)')
        if args.batch_size % args.batch_chunk != 0:
            raise RuntimeError('Batch size needs to be divisible by '
                               'batch chunk')

    if args.profile:
        try:
            pyprof.init(enable_function_stack=True)
        except NameError:
            warnings.warn('Called pyprof.init() but pyprof is not available')

    logging.info(args)
    dllogger.log(step='PARAMETER', data=vars(args))

    logging.info(f'world size: {utils.distributed.get_world_size()}')

    if not args.no_env:
        log_env_info()

    register_ignoring_timeout_handler()

    # Set the random seed manually for reproducibility.
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    ###########################################################################
    # Load data
    ###########################################################################
    corpus = get_lm_corpus(args.data, args.dataset, args.vocab)
    ntokens = len(corpus.vocab)
    vocab = corpus.vocab
    args.n_token = ntokens

    if args.mem_len == 0:
        eval_mem_len = 0
    else:
        eval_mem_len = args.mem_len + args.tgt_len - args.eval_tgt_len

    tr_iter = corpus.get_iterator('train',
                                  args.batch_size,
                                  args.tgt_len,
                                  device=device,
                                  ext_len=args.ext_len)
    va_iter = corpus.get_iterator('valid',
                                  args.eval_batch_size,
                                  args.eval_tgt_len,
                                  device=device,
                                  mem_len=eval_mem_len,
                                  ext_len=args.ext_len)
    te_iter = corpus.get_iterator('test',
                                  args.eval_batch_size,
                                  args.eval_tgt_len,
                                  device=device,
                                  mem_len=eval_mem_len,
                                  ext_len=args.ext_len)

    # adaptive softmax / embedding
    cutoffs, tie_projs = [], [False]
    if args.adaptive:
        assert args.dataset in ['wt103', 'lm1b']
        if args.dataset == 'wt103':
            cutoffs = [19997, 39997, 199997]
            tie_projs += [True] * len(cutoffs)
        elif args.dataset == 'lm1b':
            cutoffs = [59997, 99997, 639997]
            tie_projs += [False] * len(cutoffs)

    ###########################################################################
    # Build the model
    ###########################################################################
    model_config = {
        'n_token': ntokens,
        'n_layer': args.n_layer,
        'n_head': args.n_head,
        'd_model': args.d_model,
        'd_head': args.d_head,
        'd_inner': args.d_inner,
        'dropout': args.dropout,
        'dropatt': args.dropatt,
        'dtype': None,
        'tie_weight': args.tied,
        'd_embed': args.d_embed,
        'div_val': args.div_val,
        'tie_projs': tie_projs,
        'pre_lnorm': args.pre_lnorm,
        'tgt_len': args.tgt_len,
        'ext_len': args.ext_len,
        'mem_len': args.mem_len,
        'cutoffs': cutoffs,
        'same_length': args.same_length,
        'attn_type': args.attn_type,
        'clamp_len': args.clamp_len,
        'sample_softmax': args.sample_softmax,
    }

    model = MemTransformerLM(**model_config)

    model.apply(functools.partial(weights_init, args=args))
    # ensure embedding init is not overridden by out_layer in case of weight sharing
    model.word_emb.apply(functools.partial(weights_init, args=args))

    args.n_all_param = sum([p.nelement() for p in model.parameters()])
    args.n_nonemb_param = sum(
        [p.nelement() for p in model.layers.parameters()])

    # optimizer
    if args.optim.lower() == 'sgd':
        if args.sample_softmax > 0:
            dense_params, sparse_params = [], []
            for param in model.parameters():
                if param.size() == model.word_emb.weight.size():
                    sparse_params.append(param)
                else:
                    dense_params.append(param)
            optimizer_sparse = optim.SGD(sparse_params, lr=args.lr * 2)
            optimizer = optim.SGD(dense_params, lr=args.lr, momentum=args.mom)
        else:
            optimizer = optim.SGD(model.parameters(),
                                  lr=args.lr,
                                  momentum=args.mom)
            optimizer_sparse = None
    elif args.optim.lower() == 'adam':
        if args.sample_softmax > 0:
            dense_params, sparse_params = [], []
            for param in model.parameters():
                if param.size() == model.word_emb.weight.size():
                    sparse_params.append(param)
                else:
                    dense_params.append(param)
            optimizer_sparse = optim.SparseAdam(sparse_params, lr=args.lr)
            optimizer = optim.Adam(dense_params,
                                   lr=args.lr,
                                   weight_decay=args.weight_decay)
        else:
            optimizer = optim.Adam(model.parameters(),
                                   lr=args.lr,
                                   weight_decay=args.weight_decay)
            optimizer_sparse = None
    elif args.optim.lower() == 'adagrad':
        optimizer = optim.Adagrad(model.parameters(), lr=args.lr)
        optimizer_sparse = None
    elif args.optim.lower() == 'lamb':
        optimizer = lamb.Lamb(model.parameters(),
                              lr=args.lr,
                              weight_decay=args.weight_decay)
        optimizer_sparse = None
    elif args.optim.lower() == 'jitlamb':
        optimizer = lamb.JITLamb(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)
        optimizer_sparse = None

    model = model.to(device)

    scaler = None
    if args.fp16:
        if args.amp == 'pytorch':
            scaler = torch.cuda.amp.GradScaler()
        elif args.amp == 'apex':
            model, optimizer = amp.initialize(
                model,
                optimizer,
                opt_level=args.apex_amp_opt_level,
            )

    if args.multi_gpu == 'ddp' and torch.distributed.is_initialized():
        para_model = DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            broadcast_buffers=False,
            find_unused_parameters=True,
        )
    elif args.multi_gpu == 'dp':
        if args.gpu0_bsz >= 0:
            para_model = BalancedDataParallel(args.gpu0_bsz //
                                              args.batch_chunk,
                                              model,
                                              dim=1).to(device)
        else:
            para_model = nn.DataParallel(model, dim=1).to(device)
    else:
        para_model = model

    # scheduler
    if args.scheduler == 'cosine':
        if args.max_step_scheduler:
            max_step = args.max_step_scheduler
        else:
            max_step = args.max_step

        scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,
                                                         max_step -
                                                         args.warmup_step,
                                                         eta_min=args.eta_min)
        if args.sample_softmax > 0 and optimizer_sparse is not None:
            scheduler_sparse = optim.lr_scheduler.CosineAnnealingLR(
                optimizer_sparse,
                max_step - args.warmup_step,
                eta_min=args.eta_min)
        else:
            scheduler_sparse = None
    elif args.scheduler == 'inv_sqrt':
        # originally used for Transformer (in Attention is all you need)
        def lr_lambda(step):
            # return a multiplier instead of a learning rate
            if step == 0 and args.warmup_step == 0:
                return 1.
            else:
                return 1. / (step ** 0.5) if step > args.warmup_step \
                    else step / (args.warmup_step ** 1.5)

        scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
        if args.sample_softmax > 0 and optimizer_sparse is not None:
            scheduler_sparse = optim.lr_scheduler.LambdaLR(optimizer_sparse,
                                                           lr_lambda=lr_lambda)
        else:
            scheduler_sparse = None
    elif args.scheduler == 'dev_perf':
        scheduler = optim.lr_scheduler.ReduceLROnPlateau(
            optimizer,
            factor=args.decay_rate,
            patience=args.patience,
            min_lr=args.lr_min,
        )
        if args.sample_softmax > 0 and optimizer_sparse is not None:
            scheduler_sparse = optim.lr_scheduler.ReduceLROnPlateau(
                optimizer_sparse,
                factor=args.decay_rate,
                patience=args.patience,
                min_lr=args.lr_min,
            )
        else:
            scheduler_sparse = None
    elif args.scheduler == 'constant':
        pass

    logging.info('=' * 100)
    for k, v in args.__dict__.items():
        logging.info('    - {} : {}'.format(k, v))
    logging.info('=' * 100)
    logging.info('#params = {}'.format(args.n_all_param))
    logging.info('#non emb params = {}'.format(args.n_nonemb_param))

    train_step = 0
    start_epoch = 1
    last_batch = 0
    last_iter = 0
    best_val_loss = None

    if args.restart:
        try:
            checkpoint = load_checkpoint(args.restart)
            model.load_state_dict(checkpoint['model_state'])
            optimizer.load_state_dict(checkpoint['optimizer_state'])
            scheduler.load_state_dict(checkpoint['scheduler_state'])
            if args.fp16:
                if args.amp == 'pytorch':
                    scaler.load_state_dict(checkpoint['amp_state'])
                elif args.amp == 'apex':
                    amp.load_state_dict(checkpoint['amp_state'])
            train_step = checkpoint['train_step']
            start_epoch = checkpoint['epoch']
            last_batch = checkpoint['batch']
            last_iter = checkpoint['last_iter']
            best_val_loss = checkpoint['best_val_loss']

            if train_step >= args.max_step:
                logging.info(
                    f'Loaded checkpoint after {train_step} steps, but '
                    f'this run was scheduled for a total of '
                    f'{args.max_step} steps, exiting')
                sys.exit(1)

            model.apply(functools.partial(update_dropout, args=args))
            model.apply(functools.partial(update_dropatt, args=args))
        except FileNotFoundError:
            logging.info(f'Could not load checkpoint from {args.restart}, '
                         f'starting training from random init')

    meters = {}
    warmup = args.mem_len // args.tgt_len + 2
    meters['train_throughput'] = AverageMeter(warmup=warmup)
    ###########################################################################
    # Train
    ###########################################################################
    # Loop over epochs.
    # At any point you can hit Ctrl + C to break out of training early.
    start_time = time.time()
    with torch.autograd.profiler.emit_nvtx(enabled=args.profile):
        with TimeoutHandler() as timeout_handler:
            try:
                for epoch in itertools.count(start=start_epoch):
                    if args.roll:
                        tr_iter.roll(seed=args.seed + epoch)
                    train_step, best_val_loss = train(
                        tr_iter, va_iter, model, para_model, model_config,
                        optimizer, optimizer_sparse, scheduler,
                        scheduler_sparse, scaler, vocab, epoch, last_batch,
                        last_iter, train_step, best_val_loss, meters,
                        timeout_handler, device, args)

                    last_batch = 0
                    last_iter = 0

                    if train_step == args.max_step:
                        logging.info('-' * 100)
                        logging.info('End of training')
                        break
            except KeyboardInterrupt:
                logging.info('-' * 100)
                logging.info('Exiting from training early')
    elapsed = time.time() - start_time

    ###########################################################################
    # Test
    ###########################################################################
    summary = {}
    test_path = os.path.join(args.work_dir, 'checkpoint_best.pt')
    if not args.debug and not args.no_eval and os.path.exists(test_path):
        # Load the best saved model.
        checkpoint = load_checkpoint(test_path)
        model.load_state_dict(checkpoint['model_state'])

        # Run on test data.
        test_start_time = time.time()
        with torch.autograd.profiler.emit_nvtx(enabled=args.profile):
            test_loss = evaluate(te_iter, model, args)
            test_loss = utils.distributed.all_reduce_item(test_loss, 'mean')
        test_elapsed = time.time() - test_start_time

        logging.info('=' * 100)
        if args.dataset in ['enwik8', 'text8']:
            logging.info(
                '| End of training | test time: {:5.2f}s | test loss {:5.2f} | test bpc {:9.5f}'
                .format(test_elapsed, test_loss, test_loss / math.log(2)))
        else:
            logging.info(
                '| End of training | test time: {:5.2f}s | test loss {:5.2f} | test ppl {:9.3f}'
                .format(test_elapsed, test_loss, math.exp(test_loss)))
        logging.info('=' * 100)

        summary.update({
            'test_elapsed': test_elapsed,
            'test_loss': test_loss,
        })

        if args.dataset in ['enwik8', 'text8']:
            summary['test_bits_per_character'] = test_loss / math.log(2)
        else:
            summary['test_perplexity'] = math.exp(test_loss)

    logging.info(f'Training time: {(elapsed / 60):.2f} minutes')
    logging.info(
        f'Training throughput: {meters["train_throughput"].avg:.2f} tok/s')

    if best_val_loss:
        val_perplexity = math.exp(best_val_loss)
    else:
        val_perplexity = None

    summary.update({
        'train_throughput': meters['train_throughput'].avg,
        'train_elapsed': elapsed / 60,
        'valid_loss': best_val_loss,
        'valid_perplexity': val_perplexity,
    })
    dllogger.log(step=tuple(), data=summary)

    passed = benchmark(target_perplexity=args.target_perplexity,
                       test_perplexity=val_perplexity,
                       target_throughput=args.target_throughput,
                       test_throughput=meters['train_throughput'].avg)
    if not passed:
        sys.exit(1)
Example #2
0
def main():
    args = parse_args()
    if args.affinity != 'disabled':
        nproc_per_node = torch.cuda.device_count()
        affinity = utils.gpu_affinity.set_affinity(args.local_rank,
                                                   nproc_per_node,
                                                   args.affinity)
        print(f'{args.local_rank}: thread affinity: {affinity}')

    if args.type == 'pytorch':
        from mem_transformer import MemTransformerLM
    else:
        from inference.mem_transformer_jit import MemTransformerLM

    torch.cuda.set_device(args.local_rank)
    l2_promote()
    device = torch.device('cuda' if args.cuda else 'cpu')
    utils.distributed.init_distributed(args.cuda)

    with utils.distributed.sync_workers() as rank:
        if rank == 0:
            create_exp_dir(args.work_dir, debug=args.debug)

    # Setup logging
    if args.log_all_ranks:
        log_file = f'eval_log_rank_{utils.distributed.get_rank()}.log'
    else:
        log_file = f'eval_log.log'

    dllog_file = args.dllog_file
    log_file = os.path.join(args.work_dir, log_file)
    dllog_file = os.path.join(args.work_dir, dllog_file)
    if args.debug:
        log_file = os.devnull
        dllog_file = os.devnull

    utils.exp_utils.setup_logging(
        log_all_ranks=args.log_all_ranks,
        filename=log_file,
        filemode='a',
    )
    utils.exp_utils.setup_dllogger(enabled=True, filename=dllog_file)

    if args.profile:
        try:
            pyprof.init(enable_function_stack=True)
        except NameError:
            warnings.warn('Called pyprof.init() but pyprof is not available')

    logging.info(args)
    dllogger.log(step='PARAMETER', data=vars(args))

    if not args.no_env:
        log_env_info()

    # Set the random seed manually for reproducibility.
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if args.model:
        model_path = args.model
    elif args.work_dir:
        model_path = os.path.join(args.work_dir, 'checkpoint_best.pt')
    else:
        raise RuntimeError(
            'Specify path to checkpoint using --model or --work_dir')

    if not args.manual_config:
        checkpoint = load_checkpoint(model_path)
        vocab_type = checkpoint['args'].vocab
    else:
        checkpoint = None
        vocab_type = args.manual_vocab

    if args.manual:
        vocab = checkpoint['vocab']

        if hasattr(vocab, 'sym2idx') and not hasattr(vocab, 'unk_idx'):
            vocab.unk_idx = vocab.sym2idx['<unk>']

        text = " ".join(args.manual)
        tokenized = tokenize_raw(text)
        symbols = vocab.tokenize(tokenized, add_eos=True)
        tensor = vocab.convert_to_tensor(symbols)

        iter = data_utils.LMOrderedIterator(tensor,
                                            bsz=args.batch_size,
                                            bptt=args.tgt_len,
                                            device=device,
                                            ext_len=args.ext_len,
                                            warmup=False)
    else:
        # Load dataset
        corpus = get_lm_corpus(args.data, args.dataset, vocab_type)

        if args.split == 'valid' or args.split == 'test':
            iter = corpus.get_iterator(args.split,
                                       args.batch_size,
                                       args.tgt_len,
                                       device=device,
                                       mem_len=args.mem_len,
                                       ext_len=args.ext_len)
        else:
            raise RuntimeError('Unknown split')

    if args.fp16:
        dtype = torch.float16
        math_str = 'fp16'
    else:
        dtype = torch.float32
        math_str = 'fp32'

    if args.load_torchscript:
        model = torch.jit.load(args.load_torchscript)
    elif not args.manual_config:
        checkpoint['model_config']['tgt_len'] = args.tgt_len
        checkpoint['model_config']['ext_len'] = args.ext_len
        checkpoint['model_config']['mem_len'] = args.mem_len
        checkpoint['model_config']['clamp_len'] = args.clamp_len
        checkpoint['model_config']['same_length'] = args.same_length
        checkpoint['model_config']['dtype'] = dtype

        model = MemTransformerLM(**checkpoint['model_config'])
        if args.type == 'pytorch':
            model.load_state_dict(checkpoint['model_state'])
        elif args.type == 'torchscript':
            model.load_state_dict(checkpoint['model_state'], strict=False)
    elif args.manual_config:
        args.manual_config['tgt_len'] = args.tgt_len
        args.manual_config['ext_len'] = args.ext_len
        args.manual_config['mem_len'] = args.mem_len
        args.manual_config['clamp_len'] = args.clamp_len
        args.manual_config['same_length'] = args.same_length
        args.manual_config['dtype'] = dtype

        model = MemTransformerLM(**args.manual_config)

    model = model.eval()
    model = model.to(device)
    model = model.to(dtype)

    if args.type == 'torchscript' and not args.manual_config:
        state = checkpoint['model_state']

        tie_projs = checkpoint['model_config']['tie_projs']
        tie_weight = checkpoint['model_config']['tie_weight']
        div_val = checkpoint['model_config']['div_val']
        d_model = checkpoint['model_config']['d_model']
        d_embed = checkpoint['model_config']['d_embed']

        if div_val != 1 or d_model != d_embed:
            for i in range(len(model.word_emb.emb_projs)):
                model.word_emb.emb_projs[i] = state[
                    f'word_emb.emb_projs.{i}'].to(dtype)

        for i in range(len(model.crit.out_projs)):
            if div_val == 1:
                src = 0
            else:
                src = i
            if model.crit.out_projs[i] is not None:
                if tie_projs[i]:
                    model.crit.out_projs[i] = state[
                        f'word_emb.emb_projs.{src}'].to(dtype)
                else:
                    model.crit.out_projs[i] = state[f'crit.out_projs.{i}'].to(
                        dtype)

        for i in range(len(model.crit.out_layers_biases)):
            model.crit.out_layers_biases[i] = state[
                f'crit.out_layers_biases.{i}'].to(dtype)

        if tie_weight:
            for i in range(len(model.crit.out_layers_weights)):
                model.crit.out_layers_weights[i] = state[
                    f'word_emb.emb_layers.{i}.weight'].to(dtype)
        else:
            for i in range(len(model.crit.out_layers_weights)):
                model.crit.out_layers_weights[i] = state[
                    f'crit.out_layers_weights.{i}'].to(dtype)

        model = torch.jit.script(model)

    if args.type != 'pytorch':
        compile_model(model, device, args)

    if args.type == 'torchscript' and args.save_torchscript:
        torch.jit.save(model, args.save_torchscript)

    logging.info(f'Evaluating with: math {math_str} type {args.type} '
                 f'bsz {args.batch_size} tgt_len {args.tgt_len} '
                 f'ext_len {args.ext_len} mem_len {args.mem_len} '
                 f'clamp_len {args.clamp_len}')

    meters = {}
    warmup = args.mem_len // args.tgt_len + 2
    meters['eval_throughput'] = AverageMeter(warmup=warmup,
                                             keep=args.save_data)
    meters['eval_latency'] = AverageMeter(warmup=warmup, keep=args.save_data)

    with torch.autograd.profiler.emit_nvtx(enabled=args.profile):
        loss = evaluate(iter, model, meters, args.log_interval, args.max_size,
                        args.repeat)
    perplexity = math.exp(loss)
    log_str = format_log(loss, args.split, args)

    summary = {
        'eval_loss': loss,
        'eval_ppl': perplexity,
    }

    logging.info('=' * 100)
    logging.info(log_str)
    logging.info('=' * 100)

    if args.save_data:
        latency_data = np.array(meters['eval_latency'].vals)
        throughput_data = np.array(meters['eval_throughput'].vals)
        precision = 'fp16' if args.fp16 else 'fp32'
        data_fname = f'eval_data_{args.batch_size}_{precision}_{args.type}'
        data_path = os.path.join(args.work_dir, data_fname)
        data = {
            'args': args,
            'throughput': throughput_data,
            'latency': latency_data,
        }
        with open(data_path, 'wb') as f:
            pickle.dump(data, f)
        logging.info(f'Throughput Avg: {throughput_data.mean():.2f} tok/s')
        logging.info(f'Latency Avg: {1000.0 * latency_data.mean():.2f} ms')
        for p in args.percentiles:
            logging.info(
                f'Latency {p}%: {1000.0 * np.percentile(latency_data, p):.2f} ms'
            )

        logging.info('=' * 100)

        summary.update({
            'eval_throughput': throughput_data.mean(),
            'eval_avg_latency': 1000 * latency_data.mean(),
        })
        for p in args.percentiles:
            summary[f'eval_{p}%_latency'] = 1000 * np.percentile(
                latency_data, p)

    dllogger.log(step=tuple(), data=summary)

    passed = benchmark(
        target_perplexity=args.target_perplexity,
        test_perplexity=perplexity,
        target_throughput=args.target_throughput,
        test_throughput=meters['eval_throughput'].avg,
    )
    if not passed:
        sys.exit(1)