def detect_and_handle_faces(img, recognizer=None): faces = face_detect_on_photo(img) for face in faces: face = normalize_face_for_save(face) face = np.asarray(face) if face_is_blurry(face): continue cv2.imshow("Face", face) if recognizer is not None: [label_id, confidence] = recognizer.predict(face) person = get_person_from_label(label_id) print "Predicting %s with %s confidence" % (person, confidence) else: label_id = None save_face(face, label_id)
def detect_and_handle_faces(img, sonos_device=None, recognizer=None): faces = face_detect_on_photo(img) for face in faces: face = normalize_face_for_save(face) face = np.asarray(face) cv2.imshow("Face", face) if recognizer is not None: [label_id, confidence] = recognizer.predict(face) if confidence <= CONFIDENCE_THRESHOLD: person = get_person_from_label(label_id) print "Predicting %s with %s confidence" % (person, confidence) if sonos_device is not None: try_to_play_music(label_id, sonos_device) else: label_id = None save_face(face, label_id)