def train(self): self.train_setup() gpu_list = get_available_gpus( ) # [self.conf.gpu_index] # get_available_gpus() self.sess.run(tf.global_variables_initializer()) # Load the pre-trained model if provided for i in range(len(gpu_list)): with tf.device(gpu_list[i]): if self.conf.pretrain_file is not None: #checkpointfile = 'deeplab_resnet_init.ckpt' #checkpointfile = tf.train.latest_checkpoint("./model_msc_bs10/") #self.load(self.loaders[0], checkpointfile) self.load(self.loaders[0], self.conf.pretrain_file) #print("done gpu ", i) # Save checkpoint right after loading pretrained #self.save(self.saver, 0) #print("first save") # Start queue threads. threads = tf.train.start_queue_runners(coord=self.coord, sess=self.sess) # Train! for step in range(self.conf.num_steps + 1): start_time = time.time() feed_dict = {self.curr_step: step} loss_value = 0 # Clear the accumulated gradients. self.sess.run(self.zero_op, feed_dict=feed_dict) # Accumulate gradients. for i in range(self.conf.grad_update_every): _, l_val = self.sess.run( [self.accum_grads_op, self.reduced_loss], feed_dict=feed_dict) loss_value += l_val # Normalise the loss. loss_value /= self.conf.grad_update_every # Apply gradients. if step % self.conf.save_interval == 0: batch_list, images, labels, summary, _ = self.sess.run( [ self.im_list, self.image_batch, self.label_batch, self.total_summary, self.train_op ], feed_dict=feed_dict) ''' # debug print(np.array(batch_list).shape) for (i,j) in [(i,j) for i in range(2) for j in range(2)]: imsave('tmp/'+'step_'+str(step)+'_gpu_'+str(i)+'_'+str(j)+'.png', batch_list[i][j]) imsave('tmp/'+str(step)+'_0.png', images[0]) imsave('tmp/'+str(step)+'_1.png', images[1]) ''' #self.summary_writer.add_summary(summary, step) #self.save(self.saver, step) else: self.sess.run(self.train_op, feed_dict=feed_dict) duration = time.time() - start_time print('step {:d} \t loss = {:.3f}, ({:.3f} sec/step)'.format( step, loss_value, duration)) #write_log('{:d}, {:.3f}'.format(step, loss_value), self.conf.logfile) # finish self.coord.request_stop() self.coord.join(threads)
def train(self): self.train_setup() gpu_list = get_available_gpus() self.sess.run(tf.global_variables_initializer()) #''' # Load the pre-trained model if provided for i in range(len(gpu_list)): with tf.device(gpu_list[i]): if self.conf.pretrain_file is not None: self.load(self.loaders[0], self.conf.pretrain_file) #checkpointfile = tf.train.latest_checkpoint("./../Deeplab-v2--ResNet-101--Tensorflow/model_horsecowfine/") #checkpointfile = '/storage/cfmata/deeplab/openmind_copy/Deeplab-v2--ResNet-101--Tensorflow/model_horsecowfine/model.ckpt-20000' #'/storage/cfmata/deeplab/openmind_copy/Deeplab-v2--ResNet-101--Tensorflow/model_horsecowfine_crf/model.ckpt-500' #self.load(self.loaders[0], checkpointfile) #self.load(tf.train.Saver(var_list=tf.global_variables()), checkpointfile) # Start queue threads. threads = tf.train.start_queue_runners(coord=self.coord, sess=self.sess) # Train! for step in range(self.conf.num_steps + 1): start_time = time.time() feed_dict = {self.curr_step: step} # Edit if finetuning loss_value = 0 # Clear the accumulated gradients. self.sess.run(self.zero_op, feed_dict=feed_dict) # Accumulate gradients. for i in range(self.conf.grad_update_every): _, l_val = self.sess.run( [self.accum_grads_op, self.reduced_loss], feed_dict=feed_dict) loss_value += l_val # Normalise the loss. loss_value /= self.conf.grad_update_every # Apply gradients. if step % self.conf.save_interval == 0: batch_list, images, labels, sp, summary, _ = self.sess.run( [ self.im_list, self.image_batch, self.label_batch, self.sp_batch, self.total_summary, self.train_op ], feed_dict=feed_dict) ''' # debug print(np.array(batch_list).shape) for (i,j) in [(i,j) for i in range(2) for j in range(2)]: imsave('tmp/'+'step_'+str(step)+'_gpu_'+str(i)+'_'+str(j)+'.png', batch_list[i][j]) imsave('tmp/'+str(step)+'_0.png', images[0]) imsave('tmp/'+str(step)+'_1.png', images[1]) ''' self.summary_writer.add_summary(summary, step) self.save(self.saver, step) else: self.sess.run(self.train_op, feed_dict=feed_dict) duration = time.time() - start_time print('step {:d} \t loss = {:.3f}, ({:.3f} sec/step)'.format( step, loss_value, duration)) write_log('{:d}, {:.3f}'.format(step, loss_value), self.conf.logfile) # finish self.coord.request_stop() self.coord.join(threads)
def train_setup(self): tf.set_random_seed(self.conf.random_seed) # Create queue coordinator. self.coord = tf.train.Coordinator() # Input size h, w = (self.conf.input_height, self.conf.input_width) input_size = (h, w) # Devices gpu_list = get_available_gpus() zip_encoder, zip_decoder_b, zip_decoder_w = [], [], [] restore_vars = [] self.loaders = [] self.im_list = [] for i in range(len(gpu_list)): with tf.device(gpu_list[i]): # Load reader with tf.name_scope("create_inputs"): reader = ImageReader(self.conf.data_dir, self.conf.data_list, input_size, self.conf.random_scale, self.conf.random_mirror, self.conf.ignore_label, IMG_MEAN, self.coord) self.image_batch, self.label_batch, names = reader.dequeue( self.conf.batch_size) self.im_list.append(self.image_batch) image_batch_075 = tf.image.resize_images( self.image_batch, [int(h * 0.75), int(w * 0.75)]) image_batch_05 = tf.image.resize_images( self.image_batch, [int(h * 0.5), int(w * 0.5)]) # Create network with tf.variable_scope('', reuse=False): net = Deeplab_v2(self.image_batch, self.conf.num_classes, True) with tf.variable_scope('', reuse=True): net075 = Deeplab_v2(image_batch_075, self.conf.num_classes, True) with tf.variable_scope('', reuse=True): net05 = Deeplab_v2(image_batch_05, self.conf.num_classes, True) # Variables that load from pre-trained model. restore_var = [ v for v in tf.global_variables() if 'fc' not in v.name ] restore_vars.append(restore_var) # Trainable Variables all_trainable = tf.trainable_variables() # Fine-tune part encoder_trainable = [ v for v in all_trainable if 'fc' not in v.name ] # lr * 1.0 # Decoder part decoder_trainable = [ v for v in all_trainable if 'fc' in v.name ] decoder_w_trainable = [ v for v in decoder_trainable if 'weights' in v.name or 'gamma' in v.name ] # lr * 10.0 decoder_b_trainable = [ v for v in decoder_trainable if 'biases' in v.name or 'beta' in v.name ] # lr * 20.0 # Check assert (len(all_trainable) == len(decoder_trainable) + len(encoder_trainable)) assert (len(decoder_trainable) == len(decoder_w_trainable) + len(decoder_b_trainable)) # Network raw output raw_output100 = net.outputs raw_output075 = net075.outputs raw_output05 = net05.outputs raw_output = tf.reduce_max(tf.stack([ raw_output100, tf.image.resize_images(raw_output075, tf.shape(raw_output100)[1:3, ]), tf.image.resize_images(raw_output05, tf.shape(raw_output100)[1:3, ]) ]), axis=0) # Groud Truth: ignoring all labels greater or equal than n_classes label_proc = prepare_label(self.label_batch, tf.stack( raw_output.get_shape()[1:3]), num_classes=self.conf.num_classes, one_hot=False) # [batch_size, h, w] label_proc075 = prepare_label( self.label_batch, tf.stack(raw_output075.get_shape()[1:3]), num_classes=self.conf.num_classes, one_hot=False) label_proc05 = prepare_label( self.label_batch, tf.stack(raw_output05.get_shape()[1:3]), num_classes=self.conf.num_classes, one_hot=False) raw_gt = tf.reshape(label_proc, [ -1, ]) raw_gt075 = tf.reshape(label_proc075, [ -1, ]) raw_gt05 = tf.reshape(label_proc05, [ -1, ]) indices = tf.squeeze( tf.where(tf.less_equal(raw_gt, self.conf.num_classes - 1)), 1) indices075 = tf.squeeze( tf.where( tf.less_equal(raw_gt075, self.conf.num_classes - 1)), 1) indices05 = tf.squeeze( tf.where(tf.less_equal(raw_gt05, self.conf.num_classes - 1)), 1) gt = tf.cast(tf.gather(raw_gt, indices), tf.int32) gt075 = tf.cast(tf.gather(raw_gt075, indices075), tf.int32) gt05 = tf.cast(tf.gather(raw_gt05, indices05), tf.int32) raw_prediction = tf.reshape(raw_output, [-1, self.conf.num_classes]) raw_prediction100 = tf.reshape(raw_output100, [-1, self.conf.num_classes]) raw_prediction075 = tf.reshape(raw_output075, [-1, self.conf.num_classes]) raw_prediction05 = tf.reshape(raw_output05, [-1, self.conf.num_classes]) prediction = tf.gather(raw_prediction, indices) prediction100 = tf.gather(raw_prediction100, indices) prediction075 = tf.gather(raw_prediction075, indices075) prediction05 = tf.gather(raw_prediction05, indices05) # Pixel-wise softmax_cross_entropy loss loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=prediction, labels=gt) loss100 = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=prediction100, labels=gt) loss075 = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=prediction075, labels=gt075) loss05 = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=prediction05, labels=gt05) # L2 regularization l2_losses = [ self.conf.weight_decay * tf.nn.l2_loss(v) for v in all_trainable if 'weights' in v.name ] # Loss function self.reduced_loss = tf.reduce_mean(loss) + tf.reduce_mean( loss100) + tf.reduce_mean(loss075) + tf.reduce_mean( loss05) + tf.add_n(l2_losses) # Define optimizers # 'poly' learning rate base_lr = tf.constant(self.conf.learning_rate) self.curr_step = tf.placeholder(dtype=tf.float32, shape=()) learning_rate = tf.scalar_mul( base_lr, tf.pow((1 - self.curr_step / self.conf.num_steps), self.conf.power)) # We have several optimizers here in order to handle the different lr_mult # which is a kind of parameters in Caffe. This controls the actual lr for each # layer. opt_encoder = tf.train.MomentumOptimizer( learning_rate, self.conf.momentum) opt_decoder_w = tf.train.MomentumOptimizer( learning_rate * 10.0, self.conf.momentum) opt_decoder_b = tf.train.MomentumOptimizer( learning_rate * 20.0, self.conf.momentum) # Gradient accumulation # Define a variable to accumulate gradients. accum_grads = [ tf.Variable(tf.zeros_like(v.initialized_value()), trainable=False) for v in encoder_trainable + decoder_w_trainable + decoder_b_trainable ] # Define an operation to clear the accumulated gradients for next batch. self.zero_op = [ v.assign(tf.zeros_like(v)) for v in accum_grads ] # To make sure each layer gets updated by different lr's, we do not use 'minimize' here. # Instead, we separate the steps compute_grads+update_params. # Compute grads grads = tf.gradients( self.reduced_loss, encoder_trainable + decoder_w_trainable + decoder_b_trainable) # Accumulate and normalise the gradients. self.accum_grads_op = [ accum_grads[i].assign_add(grad / self.conf.grad_update_every) for i, grad in enumerate(grads) ] grads = tf.gradients( self.reduced_loss, encoder_trainable + decoder_w_trainable + decoder_b_trainable) grads_encoder = accum_grads[:len(encoder_trainable)] grads_decoder_w = accum_grads[len(encoder_trainable):( len(encoder_trainable) + len(decoder_w_trainable))] grads_decoder_b = accum_grads[(len(encoder_trainable) + len(decoder_w_trainable)):] zip_encoder.append(list(zip(grads_encoder, encoder_trainable))) zip_decoder_b.append( list(zip(grads_decoder_w, decoder_w_trainable))) zip_decoder_w.append( list(zip(grads_decoder_b, decoder_b_trainable))) avg_grads_encoder = average_gradients(zip_encoder) avg_grads_decoder_w = average_gradients(zip_decoder_w) avg_grads_decoder_b = average_gradients(zip_decoder_b) for i in range(len(gpu_list)): with tf.device(gpu_list[i]): # Update params train_op_conv = opt_encoder.apply_gradients(avg_grads_encoder) train_op_fc_w = opt_decoder_w.apply_gradients( avg_grads_decoder_w) train_op_fc_b = opt_decoder_b.apply_gradients( avg_grads_decoder_b) # Finally, get the train_op! update_ops = tf.get_collection( tf.GraphKeys.UPDATE_OPS ) # for collecting moving_mean and moving_variance with tf.control_dependencies(update_ops): self.train_op = tf.group(train_op_conv, train_op_fc_w, train_op_fc_b) # Saver for storing checkpoints of the model self.saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=0) # Loader for loading the pre-trained model for i in range(len(gpu_list)): with tf.device(gpu_list[i]): #print(restore_var) #print("restoring gpu ", i) self.loaders.append(tf.train.Saver(var_list=restore_vars[i])) #print("restored gpu ", i) # Training summary # Processed predictions: for visualisation. raw_output_up = tf.image.resize_bilinear(raw_output, input_size) raw_output_up = tf.argmax(raw_output_up, axis=3) self.pred = tf.expand_dims(raw_output_up, axis=3) # Image summary. images_summary = tf.py_func(inv_preprocess, [self.image_batch, 1, IMG_MEAN], tf.uint8) labels_summary = tf.py_func( decode_labels, [self.label_batch, 1, self.conf.num_classes], tf.uint8) preds_summary = tf.py_func(decode_labels, [self.pred, 1, self.conf.num_classes], tf.uint8) self.total_summary = tf.summary.image( 'images', tf.concat(axis=2, values=[images_summary, labels_summary, preds_summary]), max_outputs=1) # Concatenate row-wise. if not os.path.exists(self.conf.logdir): os.makedirs(self.conf.logdir) self.summary_writer = tf.summary.FileWriter( self.conf.logdir, graph=tf.get_default_graph())
def train_setup(self): tf.set_random_seed(self.conf.random_seed) # Create queue coordinator. self.coord = tf.train.Coordinator() # Input size h, w = (self.conf.input_height, self.conf.input_width) input_size = (h, w) # Devices gpu_list = get_available_gpus() zip_encoder, zip_decoder_b, zip_decoder_w, zip_crf = [], [], [], [] previous_crf_names = [] restore_vars = [] self.loaders = [] self.im_list = [] for i in range(len(gpu_list)): with tf.device(gpu_list[i]): # Load reader with tf.name_scope("create_inputs"): reader = ImageReader(self.conf.data_dir, self.conf.data_list, input_size, self.conf.random_scale, self.conf.random_mirror, self.conf.ignore_label, IMG_MEAN, self.coord) self.image_batch, self.label_batch, self.sp_batch = reader.dequeue( self.conf.batch_size) self.im_list.append(self.image_batch) image_batch_075 = tf.image.resize_images( self.image_batch, [int(h * 0.75), int(w * 0.75)]) image_batch_05 = tf.image.resize_images( self.image_batch, [int(h * 0.5), int(w * 0.5)]) sp_batch_075 = tf.image.resize_images( self.sp_batch, [int(h * 0.75), int(w * 0.75)]) sp_batch_05 = tf.image.resize_images( self.sp_batch, [int(h * 0.5), int(w * 0.5)]) #for i in range(1): # self.image_batch = tf.Print(self.image_batch, [self.image_batch[i]], message = 'image batch ', summarize=5) #for i in range(1): # self.label_batch = tf.Print(self.label_batch, [self.label_batch[i]], message = 'label batch ', summarize=5) #for i in range(1): # self.sp_batch = tf.Print(self.sp_batch, [self.sp_batch[i]], message = 'sp batch ', summarize=5) # Create network with tf.variable_scope('', reuse=False): if self.conf.crf_type == 'crf': net = Deeplab_v2(self.image_batch, self.conf.num_classes, True, rescale075=False, rescale05=False, crf_type=self.conf.crf_type) else: net = Deeplab_v2(self.image_batch, self.conf.num_classes, True, rescale075=False, rescale05=False, crf_type=self.conf.crf_type, superpixels=self.sp_batch) ''' with tf.variable_scope('', reuse=True): if self.conf.crf_type == 'crfSP': net075 = Deeplab_v2(image_batch_075, self.conf.num_classes, True, rescale075=True, rescale05=False, crf_type = self.conf.crf_type, superpixels=sp_batch_075) else: net075 = Deeplab_v2(image_batch_075, self.conf.num_classes, True, rescale075=True, rescale05=False, crf_type = self.conf.crf_type) with tf.variable_scope('', reuse=True): if self.conf.crf_type == 'crfSP': net05 = Deeplab_v2(image_batch_05, self.conf.num_classes, True, rescale075=False, rescale05=True, crf_type = self.conf.crf_type, superpixels=sp_batch_05) else: net05 = Deeplab_v2(image_batch_05, self.conf.num_classes, True, rescale075=False, rescale05=True, crf_type = self.conf.crf_type) ''' # Variables that load from pre-trained model. restore_var = [ v for v in tf.global_variables() if ('fc' not in v.name and 'crfrnn' not in v.name) ] # when don't want to train using previous crf weights #restore_var = [v for v in tf.global_variables() if ('fc' not in v.name and 'superpixel' not in v.name)] restore_vars.append(restore_var) # Trainable Variables all_trainable = tf.trainable_variables() # Fine-tune part for name in previous_crf_names: for v in all_trainable: if v.name == name: all_trainable.remove(v) crf_trainable = [ v for v in all_trainable if ('crfrnn' in v.name and v.name not in previous_crf_names ) ] previous_crf_names.extend(v.name for v in crf_trainable) encoder_trainable = [ v for v in all_trainable if 'fc' not in v.name and 'crfrnn' not in v.name ] # lr * 1.0 # Remove encoder_trainable from all_trainable #all_trainable = [v for v in all_trainable if v not in encoder_trainable] # Decoder part decoder_trainable = [ v for v in all_trainable if 'fc' in v.name and 'crfrnn' not in v.name ] decoder_w_trainable = [ v for v in decoder_trainable if ('weights' in v.name or 'gamma' in v.name) and 'crfrnn' not in v.name ] # lr * 10.0 decoder_b_trainable = [ v for v in decoder_trainable if ('biases' in v.name or 'beta' in v.name) and 'crfrnn' not in v.name ] # lr * 20.0 # Check assert (len(all_trainable) == len(encoder_trainable) + len(decoder_trainable) + len(crf_trainable) ) #+ len(encoder_trainable) assert (len(decoder_trainable) == len(decoder_w_trainable) + len(decoder_b_trainable)) # Network raw output raw_output100 = net.outputs raw_output = raw_output100 ''' raw_output075 = net075.outputs raw_output05 = net05.outputs raw_output = tf.reduce_max(tf.stack([raw_output100, tf.image.resize_images(raw_output075, tf.shape(raw_output100)[1:3,]), tf.image.resize_images(raw_output05, tf.shape(raw_output100)[1:3,])]), axis=0) ''' # Ground Truth: ignoring all labels greater or equal than n_classes label_proc = prepare_label(self.label_batch, tf.stack( raw_output.get_shape()[1:3]), num_classes=self.conf.num_classes, one_hot=True) # [batch_size, h, w] ''' label_proc075 = prepare_label(self.label_batch, tf.stack(raw_output075.get_shape()[1:3]), num_classes=self.conf.num_classes, one_hot=True) label_proc05 = prepare_label(self.label_batch, tf.stack(raw_output05.get_shape()[1:3]), num_classes=self.conf.num_classes, one_hot=True) ''' raw_gt = tf.reshape(label_proc, [ -1, ]) ''' raw_gt075 = tf.reshape(label_proc075, [-1,]) raw_gt05 = tf.reshape(label_proc05, [-1,]) ''' indices = tf.squeeze( tf.where(tf.less_equal(raw_gt, self.conf.num_classes - 1)), 1) ''' indices075 = tf.squeeze(tf.where(tf.less_equal(raw_gt075, self.conf.num_classes - 1)), 1) indices05 = tf.squeeze(tf.where(tf.less_equal(raw_gt05, self.conf.num_classes - 1)), 1) ''' gt = tf.cast(tf.gather(raw_gt, indices), tf.int32) ''' gt075 = tf.cast(tf.gather(raw_gt075, indices075), tf.int32) gt05 = tf.cast(tf.gather(raw_gt05, indices05), tf.int32) ''' raw_prediction = tf.reshape(raw_output, [-1, self.conf.num_classes]) raw_prediction100 = tf.reshape(raw_output100, [-1, self.conf.num_classes]) ''' raw_prediction075 = tf.reshape(raw_output075, [-1, self.conf.num_classes]) raw_prediction05 = tf.reshape(raw_output05, [-1, self.conf.num_classes]) ''' prediction = tf.gather(raw_prediction, indices) prediction100 = tf.gather(raw_prediction100, indices) ''' prediction075 = tf.gather(raw_prediction075, indices075) prediction05 = tf.gather(raw_prediction05, indices05) ''' # Pixel-wise softmax_cross_entropy loss #loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction, labels=gt) loss = tf.nn.softmax_cross_entropy_with_logits( logits=raw_prediction, labels=tf.reshape(label_proc[0], (h * w, self.conf.num_classes))) # NOTE used to be loss=tf.nn.softmax_cross_entropy_with_logits_v2 ''' coefficients = [0.01460247, 1.25147725, 2.88479363, 1.20348121, 1.65261654, 1.67514772, 0.62338799, 0.7729363, 0.42038501, 0.98557268, 1.31867536, 0.85313332, 0.67227604, 1.21317965, 1. , 0.24263748, 1.80877607, 1.3082213, 0.79664027, 0.72543945, 1.27823374] ''' #loss = weighted_loss(self.conf.num_classes, coefficients, labels=tf.reshape(label_proc[0], (h*w, self.conf.num_classes)), logits=raw_prediction) #loss100 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction100, labels=gt) loss100 = tf.nn.softmax_cross_entropy_with_logits( logits=raw_prediction100, labels=tf.reshape(label_proc[0], (h * w, self.conf.num_classes))) # NOTE used to be loss=tf.nn.softmax_cross_entropy_with_logits_v2 #loss100 = weighted_loss(self.conf.num_classes, coefficients, labels=tf.reshape(label_proc[0], (h*w, self.conf.num_classes)), logits=raw_prediction100) #loss075 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction075, labels=gt075) #loss075 = tf.nn.softmax_cross_entropy_with_logits_v2(logits=raw_prediction075, labels=tf.reshape(label_proc075[0], (int(h * 0.75) * int(w * 0.75), self.conf.num_classes))) #loss075 = weighted_loss(self.conf.num_classes, coefficients, labels=tf.reshape(label_proc075[0], (int(h * 0.75) * int(w * 0.75), self.conf.num_classes)), logits=raw_prediction075) #loss05 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction05, labels=gt05) #loss05 = tf.nn.softmax_cross_entropy_with_logits_v2(logits=raw_prediction05, labels=tf.reshape(label_proc05[0], (int(h * 0.5) * int(w * 0.5), self.conf.num_classes))) #loss05 = weighted_loss(self.conf.num_classes, coefficients, labels=tf.reshape(label_proc05[0], (int(h * 0.5) * int(w * 0.5), self.conf.num_classes)), logits=raw_prediction05) # L2 regularization l2_losses = [ self.conf.weight_decay * tf.nn.l2_loss(v) for v in all_trainable if 'weights' in v.name ] # Loss function self.reduced_loss = tf.reduce_mean(loss) + tf.reduce_mean( loss100 ) #+ tf.reduce_mean(loss075) + tf.reduce_mean(loss05) + tf.add_n(l2_losses) # Define optimizers # 'poly' learning rate base_lr = tf.constant(self.conf.learning_rate) self.curr_step = tf.placeholder(dtype=tf.float32, shape=()) learning_rate = tf.scalar_mul( base_lr, tf.pow((1 - self.curr_step / self.conf.num_steps), self.conf.power)) # We have several optimizers here in order to handle the different lr_mult # which is a kind of parameters in Caffe. This controls the actual lr for each # layer. opt_encoder = tf.train.MomentumOptimizer( learning_rate, self.conf.momentum) opt_decoder_w = tf.train.MomentumOptimizer( learning_rate * 10.0, self.conf.momentum) opt_decoder_b = tf.train.MomentumOptimizer( learning_rate * 20.0, self.conf.momentum) opt_crf = tf.train.MomentumOptimizer(learning_rate, self.conf.momentum) # Gradient accumulation # Define a variable to accumulate gradients. accum_grads = [ tf.Variable(tf.zeros_like(v.initialized_value()), trainable=False) for v in encoder_trainable + decoder_w_trainable + decoder_b_trainable + crf_trainable ] #encoder_trainable + # Define an operation to clear the accumulated gradients for next batch. self.zero_op = [ v.assign(tf.zeros_like(v)) for v in accum_grads ] # To make sure each layer gets updated by different lr's, we do not use 'minimize' here. # Instead, we separate the steps compute_grads+update_params. # Compute grads grads = tf.gradients(self.reduced_loss, encoder_trainable + decoder_w_trainable + decoder_b_trainable + crf_trainable) #encoder_trainable + # Accumulate and normalise the gradients. self.accum_grads_op = [ accum_grads[i].assign_add(grad / self.conf.grad_update_every) for i, grad in enumerate(grads) ] #''' grads_encoder = accum_grads[:len(encoder_trainable)] grads_decoder_w = accum_grads[len(encoder_trainable ):len(encoder_trainable) + len(decoder_w_trainable)] grads_decoder_b = accum_grads[( len(encoder_trainable) + len(decoder_w_trainable)):(len(encoder_trainable) + len(decoder_w_trainable) + len(decoder_b_trainable))] grads_crf = accum_grads[ len(encoder_trainable) + len(decoder_w_trainable) + len(decoder_b_trainable ):] # assuming crf gradients are appended to the end #''' ''' grads_decoder_w = accum_grads[: len(decoder_w_trainable)] grads_decoder_b = accum_grads[(len(decoder_w_trainable)):(len(decoder_w_trainable)+len(decoder_b_trainable))] grads_crf = accum_grads[len(decoder_w_trainable)+len(decoder_b_trainable):] # assuming crf gradients are appended to the end ''' zip_encoder.append(list(zip(grads_encoder, encoder_trainable))) zip_decoder_b.append( list(zip(grads_decoder_b, decoder_b_trainable))) zip_decoder_w.append( list(zip(grads_decoder_w, decoder_w_trainable))) zip_crf.append(list(zip(grads_crf, crf_trainable))) avg_grads_encoder = average_gradients(zip_encoder) avg_grads_decoder_w = average_gradients(zip_decoder_w) avg_grads_decoder_b = average_gradients(zip_decoder_b) avg_grads_crf = average_gradients(zip_crf) for i in range(len(gpu_list)): with tf.device(gpu_list[i]): # Update params train_op_conv = opt_encoder.apply_gradients(avg_grads_encoder) train_op_fc_w = opt_decoder_w.apply_gradients( avg_grads_decoder_w) train_op_fc_b = opt_decoder_b.apply_gradients( avg_grads_decoder_b) train_op_crf = opt_crf.apply_gradients(avg_grads_crf) # Finally, get the train_op! update_ops = tf.get_collection( tf.GraphKeys.UPDATE_OPS ) # for collecting moving_mean and moving_variance with tf.control_dependencies(update_ops): self.train_op = tf.group(train_op_conv, train_op_fc_w, train_op_fc_b, train_op_crf) # train_op_conv # Saver for storing checkpoints of the model self.saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=0) # Loader for loading the pre-trained model for i in range(len(gpu_list)): with tf.device(gpu_list[i]): self.loaders.append(tf.train.Saver(var_list=restore_vars[i])) #self.loaders.append(tf.train.Saver(var_list=tf.global_variables())) # Training summary # Processed predictions: for visualisation. raw_output_up = tf.image.resize_bilinear(raw_output, input_size) raw_output_up = tf.argmax(raw_output_up, axis=3) self.pred = tf.expand_dims(raw_output_up, axis=3) # Image summary. images_summary = tf.py_func(inv_preprocess, [self.image_batch, 1, IMG_MEAN], tf.uint8) labels_summary = tf.py_func( decode_labels, [self.label_batch, 1, self.conf.num_classes], tf.uint8) preds_summary = tf.py_func(decode_labels, [self.pred, 1, self.conf.num_classes], tf.uint8) self.total_summary = tf.summary.image( 'images', tf.concat(axis=2, values=[images_summary, labels_summary, preds_summary]), max_outputs=1) # Concatenate row-wise. if not os.path.exists(self.conf.logdir): os.makedirs(self.conf.logdir) self.summary_writer = tf.summary.FileWriter( self.conf.logdir, graph=tf.get_default_graph())