def main(): file_edge_path = "./data/edge_list.txt" file_node_path = "./data/class_info.txt" base_dir = "./plot/" g, train_node, test_node = GraphUtils().make_graph(file_edge_path, file_node_path) GraphUtils().print_all_graph_quantitatively(g) GraphUtils().print_quantitatively_plt(g, base_dir) GraphUtils().get_centrality(g)
def main(): file_edge_path = "./data/edge_list.txt" file_node_path = "./data/class_info.txt" emb_dir = "./emb/" os.makedirs(emb_dir, exist_ok=True) model_dir = "./model/" os.makedirs(model_dir, exist_ok=True) # node vec parameter p = 1 q = 1 num_walks = 50 #40#30#18 #50 #40 #30 #18 walk_length = 200 #300#300 #200 # 500 #400 #200 #100 dimensions = 128 window_size = 15 workers = 8 iter = 3 emb_load_file = "" # Uncomment it For load embedding emb_load_file = "./emb/50_300_f1_0.916_nede2vec.emb" #emb_load_file = "./emb/50_200_f1_0.899_nede2vec.emb" model_file_load = "" # Uncomment it For load model model_file_load = "./model/50_300_128_LogisticRegressionCV_n2v_0.916.bin" #model_file_load = "./model/50_200_128_LogisticRegressionCV_n2v_0.899.bin" best_model_file = model_file_load model = None walks = None # make graph g, train_node, test_node = GraphUtils().make_graph(file_edge_path, file_node_path) # make random walks if emb_load_file is None or emb_load_file == "": walks = make_random_walk(g, p, q, num_walks, walk_length) # make embedding emb_model = get_embedding(walks, dimensions, window_size, workers, iter, emb_load_file) # preparing data X, y, train_val, test_val, test_X, test_y = preprocessing_data( emb_model, file_node_path) if model_file_load is None or model_file_load == "": # classifier train model, best_model_file, best_f1 = cv_model_selection( X, y, num_walks, walk_length, dimensions, model_dir) # embedding model save with parameter emb_save(emb_model, num_walks, walk_length, best_f1, emb_dir) # prediction n2v_prediction(model, X, test_X, train_val, y, test_val, best_model_file, model_file_load)
def n2v_prediction(best_model, X, test_X, train_val, y, test_val, best_model_file, model_file_load=None): if model_file_load is None or model_file_load == "": model = best_model else: # model_name = model_dir + file_name model = load_model(model_file_load) model_pred_test = model.predict(test_X) model_pred_train = model.predict(X) acc = accuracy_score(y, model_pred_train) f1 = f1_score(y, model_pred_train) print("saving model eval -> acc : {0} f1 : {1}".format(acc, f1)) dict_200 = dict(zip(list(map(int, train_val)), list(y))) dict_800 = dict(zip(list(map(int, test_val)), list(model_pred_test))) all_df = {**dict_200, **dict_800} dict_800 = dict(sorted(dict_800.items())) result_file = result_dir + os.path.splitext( os.path.basename(best_model_file))[0] + "_" + str(f1) + ".txt" GraphUtils().save_result(dict_800, result_file)
def main(): file_emb_output = "./emb/18_100_f1_0.916_nede2vec.emb" file_edge_path = "./data/edge_list.txt" file_node_path = "./data/class_info.txt" g, train_node, test_node = GraphUtils().make_graph(file_edge_path, file_node_path) G, train_gen, train_targets, val_gen, val_targets, test_targets, test_gen, all_gen, generator \ = GraphUtils().preprocessing(g, train_node, file_emb_output) Gt, test_800_gen, generator = GraphUtils().preprocessing_predict( g, test_node, file_emb_output) ppnp_model, embedding_model = make_ppnp(train_targets, generator) ppnp_train(ppnp_model, train_gen, val_gen) GraphUtils().evaluate(ppnp_model, test_gen) all_node_test(ppnp_model, all_gen, train_node, test_800_gen, test_node) GraphUtils().show_embedding(embedding_model, all_gen, train_node, 'PPNP')
def main(): file_edge_path = "./data/edge_list.txt" file_node_path = "./data/class_info.txt" g2 = GraphUtils().preprocess_label_propagation(file_edge_path, file_node_path) # position file save for plotting #pos_file = save_layout_pos(g1) pos_file = "./obj/spring_layout_pos.pkl" """ Library """ communities = asyn_lpa_communities(G=g2, pos_file=pos_file, limit_epoch=100, chk_dir=checkpoint_dir, base_dir=base_dir, weight=None) # Asynchronous nx.set_node_attributes(g2, communities, 'community')
def all_node_test(model, all_gen, train_node, test_800_gen, test_node): #all_nodes = node_subjects.index #all_gen = generator.flow(all_nodes) all_predictions = model.predict(all_gen) predicted_node = np.where(all_predictions > 0.5, '1', '-1') # accuracy_score(node_subjects.value, predicted_node.squeeze()) score = accuracy_score(train_node['values'].values.astype(str), predicted_node.squeeze()) f1 = f1_score(train_node['values'].values.astype(int), predicted_node.squeeze().astype(int)) predictions_800 = model.predict(test_800_gen) predicted_800_node = np.where(predictions_800 > 0.5, '1', '-1') dict_800 = dict( zip(list(map(int, test_node['node'].values)), list(predicted_800_node.squeeze()))) result_file = "./result/" + "gcn_result" + "_" + str(round(f1, 2)) + ".txt" GraphUtils().save_result(dict_800, result_file) print("\nTest train all node: \n \tacc : {0} f1: {1}".format(score, f1))
def asyn_lpa_communities(G, pos_file, limit_epoch, chk_dir, base_dir, weight=None): """Returns communities in `G` as detected by asynchronous label propagation. The asynchronous label propagation algorithm is described in [1]_. The algorithm is probabilistic and the found communities may vary on different executions. The algorithm proceeds as follows. After initializing each node with a unique label, the algorithm repeatedly sets the label of a node to be the label that appears most frequently among that nodes neighbors. The algorithm halts when each node has the label that appears most frequently among its neighbors. The algorithm is asynchronous because each node is updated without waiting for updates on the remaining nodes. This generalized version of the algorithm in [1]_ accepts edge weights. Parameters ---------- G : Graph weight : string The edge attribute representing the weight of an edge. If None, each edge is assumed to have weight one. In this algorithm, the weight of an edge is used in determining the frequency with which a label appears among the neighbors of a node: a higher weight means the label appears more often. Returns ------- communities : iterable Iterable of communities given as sets of nodes. Notes ------ Edge weight attributes must be numerical. References ---------- .. [1] Raghavan, Usha Nandini, RĂ©ka Albert, and Soundar Kumara. "Near linear time algorithm to detect community structures in large-scale networks." Physical Review E 76.3 (2007): 036106. """ if pos_file is not None: pos = load_obj(pos_file) labels = {n: G._node[n]['label'] for i, n in enumerate(G)} all_nodes = list(G) node_with_zero = [n for n in all_nodes if G._node[n]['label'] == 0] total_cont = True number_loop = 0 best_epoch = 0 stop_point = 0 label_dict = dict() cont = True while total_cont and cont: cont = False random.shuffle(node_with_zero) # Calculate the label for each node #end_freq = Counter() check_nodes = dict() for node in node_with_zero: if len(G[node]) < 1: continue # Get label frequencies. Depending on the order they are processed # in some nodes with be in t and others in t-1, making the # algorithm asynchronous. label_freq = Counter() for v in G[node]: value = G.nodes[v]['label'] if labels[v] != 0: label_freq.update( {labels[v]: G.edges[v, node][weight] if weight else 1}) # Choose the label with the highest frecuency. If more than 1 label # has the highest frecuency choose one randomly. if len(label_freq) != 0: try: max_freq = max(label_freq.values()) except Exception as e: print(e) best_labels = [ label for label, freq in label_freq.items() if freq == max_freq ] new_label = random.choice(best_labels) labels[node] = new_label # Continue until all nodes have a label that is better than other # neighbour labels (only one label has max_freq for each node). cont = cont or len(best_labels) > 1 end_freq = Counter(labels.values()) check_nodes[node] = cont #if (end_freq[0] + end_freq[1]) == 800: chk_flg = Counter(check_nodes.values()) # End of node loop if (end_freq[0]) == 0: current_epoch = chk_flg[False] if current_epoch > best_epoch: # Add communities attribute into the graph plot_g = G.copy() nx.set_node_attributes(plot_g, labels, 'community') best_epoch = current_epoch # Save best_epoch label label_dict[best_epoch] = labels #nx.set_node_attributes(G, labels, 'community') save_graphml(G, chk_dir, best_epoch) print("result : {0}, epoch {1} false_cnt {2}".format( end_freq, number_loop, current_epoch)) stop_point += 1 GraphUtils().draw_network(plot_g, base_dir, pos, best_epoch) best_dict = { items[0]: items[1] for items in labels.items() if items[0] in node_with_zero } #best_df = pd.DataFrame({"node": best_dict.keys(), "value": best_dict.values()}) result_file = "./result/" + "epoch_{0}_fcnt_{1}_lp_result.txt".format( number_loop, current_epoch) GraphUtils().save_result(best_dict, result_file) # saving as a CSV file #df.to_csv(result_dir, sep='\t', index=False, header=False) elif number_loop % 1 == 0: plot_g = G.copy() nx.set_node_attributes(plot_g, labels, 'community') print("result : {0}, epoch {1}".format(end_freq, number_loop)) GraphUtils().draw_network(plot_g, base_dir, pos, best_epoch) #chk_flg = Counter(check_nodes.values()) number_loop += 1 if number_loop > limit_epoch: total_cont = False print("cont Counter : {0} epoch {1}".format(chk_flg, number_loop)) labels_b = label_dict[max(label_dict.keys())] # TODO In Python 3.3 or later, this should be `yield from ...`. return labels_b