def get_data(self): process_wmt = PrepareWmt() data_structure1 = process_wmt.get_data_structure(self.config) data_structure2 = process_wmt.get_data_structure2(self.config) process_wmt.print_data_set(self.config, data_structure1) if 'Parse' in loads(self.config.get("Resources", "processors")): process_wmt_parse = PrepareWmt(data_type='parse') data_structure_parse = process_wmt_parse.get_data_structure(self.config) process_wmt_parse.print_data_set(self.config, data_structure_parse) f_judgements = self.config.get('WMT', 'human_ranking') maximum_comparisons = int(self.config.get('WMT', 'maximum_comparisons')) human_rankings = HumanRanking() human_rankings.add_human_data(f_judgements, self.config, max_comparisons=maximum_comparisons) process = Process(self.config) sents_tgt, sents_ref = process.run_processors() extractor = FeatureExtractor(self.config) features_to_extract = FeatureExtractor.read_feature_names(self.config) extractor.extract_features(features_to_extract, sents_tgt, sents_ref) return data_structure2, human_rankings, extractor.vals
def feature_extraction(config_features_path): config = ConfigParser() config.readfp(open(config_features_path)) wd = config.get('WMT', 'working_directory') if not os.path.exists(wd): os.mkdir(wd) data = RankingData(config) data.read_dataset() process = Process(config) sentences_tgt, sentences_ref = process.run_processors() feature_names = FeatureExtractor.read_feature_names(config) feature_values = FeatureExtractor.extract_features_static(feature_names, sentences_tgt, sentences_ref) write_feature_file(wd + '/' + 'x' + '_' + data.datasets[0].name + '.tsv', feature_values) my_dataset = data.plain[0].dataset my_lp = data.plain[0].lp f_path = wd + '/' + 'x' + '_' + my_dataset + '_' + my_lp + '.tsv' f_file = open(f_path, 'w') for i, instance in enumerate(data.plain): if instance.dataset == my_dataset and instance.lp == my_lp: f_file.write('\t'.join([str(x) for x in feature_values[i]]) + "\n") else: f_file.close() my_dataset = instance.dataset my_lp = instance.lp f_path = wd + '/' + 'x' + '_' + my_dataset + '_' + my_lp + '.tsv' f_file = open(f_path, 'w') f_judgements = config.get('WMT', 'human_ranking') human_rankings = HumanRanking() human_rankings.add_human_data(f_judgements, config) human_rankings.get_sentence_ids(data) learn_to_rank(feature_values, human_rankings, wd + '/' + 'x_learn_to_rank.tsv', wd + '/' + 'y_learn_to_rank.tsv')
def clean_dataset(config_learning, human_comparisons): feature_values = read_features_file(config_learning.get('x_train'), '\t') labels = read_reference_file(config_learning.get('y_train'), '\t') new_feature_values = [] new_labels = [] human_comparisons = RankingTask.eliminate_ties(human_comparisons) comparisons_untied_phrases = defaultdict(list) comparisons_untied_signs = defaultdict(list) deduplicated_phrases, deduplicated_signs = HumanRanking.deduplicate(human_comparisons) for dataset, lang_pair in sorted(human_comparisons.keys()): for comparison in human_comparisons[dataset, lang_pair]: if comparison.sign == "=": continue else: comparisons_untied_phrases[dataset, lang_pair].append([comparison.phrase, comparison.sys1, comparison.sys2]) comparisons_untied_signs[dataset, lang_pair].append(comparison.sign) for dataset, lang_pair in sorted(human_comparisons.keys()): for i, comparison in enumerate(comparisons_untied_phrases[dataset, lang_pair]): features = feature_values[i] label = labels[i] if comparison in deduplicated_phrases[dataset, lang_pair]: if deduplicated_signs[dataset, lang_pair][deduplicated_phrases[dataset, lang_pair].index(comparison)] is None: continue label = RankingTask.signs_to_labels(deduplicated_signs[dataset, lang_pair][deduplicated_phrases[dataset, lang_pair].index(comparison)]) new_feature_values.append(features) new_labels.append(label) write_feature_file(config_learning.get('x_train') + "." + "clean", new_feature_values) write_reference_file(config_learning.get('y_train') + "." + "clean", new_labels)
config_learning = yaml.load(cfg_file.read()) # Prepare feature files # This needs to be done for both training and testing data, changing the names of the datasets in the configuratio file prepare_wmt = PrepareWmt() ranking_task = RankingTask(config_path) ranking_task.prepare_feature_files() # Create training set for learn to rank # Comment the above prepare feature files method dataset_for_all = config.get('WMT', 'dataset') feature_set_name = os.path.basename(config.get('Features', 'feature_set')).replace(".txt", "") data_structure2 = prepare_wmt.get_data_structure2(config) f_judgements = config.get('WMT', 'human_ranking') human_rankings = HumanRanking() human_rankings.add_human_data(f_judgements, config) feature_values = read_features_file(os.path.expanduser(config.get('WMT', 'output_dir')) + '/' + 'x_' + dataset_for_all + '.' + feature_set_name + '.' + 'all' + '.tsv', "\t") ranking_task.training_set_for_learn_to_rank(data_structure2, human_rankings, feature_values) ranking_task.train_save(config_learning, config) # Run the trained model on a the test feature file and produce the output in WMT format predictions = ranking_task.test_learn_to_rank_coefficients(config_learning, config) data_structure = prepare_wmt.get_data_structure(config) prepare_wmt.wmt_format(config, feature_set_name, dataset_for_all, predictions, data_structure)