def im_detect_bbox_aspect_ratio(model, im, aspect_ratio, box_proposals=None, hflip=False): """Computes bbox detections at the given width-relative aspect ratio. Returns predictions in the original image space. """ # Compute predictions on the transformed image im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) if not cfg.MODEL.FASTER_RCNN: box_proposals_ar = box_utils.aspect_ratio(box_proposals, aspect_ratio) else: box_proposals_ar = None if hflip: scores_ar, boxes_ar, _ = im_detect_bbox_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals=box_proposals_ar) else: scores_ar, boxes_ar, _, _ = im_detect_bbox(model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals_ar) # Invert the detected boxes boxes_inv = box_utils.aspect_ratio(boxes_ar, 1.0 / aspect_ratio) return scores_ar, boxes_inv
def im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals=None, hflip=False ): """Computes bbox detections at the given width-relative aspect ratio. Returns predictions in the original image space. """ # Compute predictions on the transformed image im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) if not cfg.MODEL.FASTER_RCNN: box_proposals_ar = box_utils.aspect_ratio(box_proposals, aspect_ratio) else: box_proposals_ar = None if hflip: scores_ar, boxes_ar, _ = im_detect_bbox_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals=box_proposals_ar ) else: scores_ar, boxes_ar, _ = im_detect_bbox( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals_ar ) # Invert the detected boxes boxes_inv = box_utils.aspect_ratio(boxes_ar, 1.0 / aspect_ratio) return scores_ar, boxes_inv
def im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes, hflip=False): """Computes mask detections at the given width-relative aspect ratio.""" # Perform mask detection on the transformed image im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils.aspect_ratio(boxes, aspect_ratio) if hflip: masks_ar = im_detect_mask_hflip(model, im_ar, boxes_ar) else: im_scales = im_conv_body_only(model, im_ar) masks_ar = im_detect_mask(model, im_scales, boxes_ar) return masks_ar
def im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes, hflip=False): """Detects keypoints at the given width-relative aspect ratio.""" # Perform keypoint detectionon the transformed image im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils.aspect_ratio(boxes, aspect_ratio) if hflip: heatmaps_ar = im_detect_keypoints_hflip(model, im_ar, boxes_ar) else: im_scales = im_conv_body_only(model, im_ar) heatmaps_ar = im_detect_keypoints(model, im_scales, boxes_ar) return heatmaps_ar
def im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes, hflip=False): """Computes mask detections at the given width-relative aspect ratio""" # perform mask detection on the transformed image im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils.aspect_ratio(boxes, aspect_ratio) if hflip: masks_ar = im_detect_mask_hflip(model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes_ar) else: blob_conv_ar, im_scale_ar = im_conv_body_only(model, im, target_scale, target_max_size) # _, im_scale, _ = blob_utils.get_image_blob(im, target_scale, target_max_size) masks_ar = im_detect_mask(model, im_scale_ar, boxes_ar, blob_conv_ar) return masks_ar
def im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes, hflip=False): """Computes mask detections at the given width-relative aspect ratio.""" # Perform mask detection on the transformed image im_ar = blob_utils.pack_sequence([ image_utils.aspect_ratio_rel(x, aspect_ratio) for x in blob_utils.unpack_sequence(im) ]) boxes_ar = box_utils.aspect_ratio(boxes, aspect_ratio) if hflip: masks_ar = im_detect_mask_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes_ar ) else: blob_conv, im_scale = im_conv_body_only( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE ) masks_ar = im_detect_mask(model, im_scale, boxes_ar, blob_conv) return masks_ar
def im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes, hflip=False): """Detects keypoints at the given width-relative aspect ratio.""" # Perform keypoint detectionon the transformed image im_ar = blob_utils.pack_sequence([ image_utils.aspect_ratio_rel(x, aspect_ratio) for x in blob_utils.unpack_sequence(im) ]) boxes_ar = box_utils.aspect_ratio(boxes, aspect_ratio) if hflip: heatmaps_ar = im_detect_keypoints_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes_ar ) else: blob_conv, im_scale = im_conv_body_only( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE ) heatmaps_ar = im_detect_keypoints(model, im_scale, boxes_ar, blob_conv) return heatmaps_ar