def __getitem__(self, idx): if self.is_trian: ele_anno = self.anno[self.train_list[idx]] else: ele_anno = self.anno[self.valid_list[idx]] res_img = [256, 256] res_heatmap = [64, 64] path_img_folder = 'mpii_human_pose_v1/images' path_img = os.path.join(path_img_folder, ele_anno['img_paths']) img_origin = imgutils.load_image(path_img) img_crop, ary_pts_crop, c_crop = imgutils.crop( img_origin, ele_anno, use_randscale=self.use_scale, use_randflipLR=self.use_flip, use_randcolor=self.use_rand_color) img_out, pts_out, c_out = imgutils.change_resolu( img_crop, ary_pts_crop, c_crop, res_heatmap) train_img = skimage.transform.resize(img_crop, tuple(res_img)) train_heatmap = imgutils.generate_heatmaps(img_out, pts_out, sigma_valu=2) train_pts = pts_out[:, :2].astype(np.int32) # (H,W,C) -> (C,H,W) train_img = np.transpose(train_img, (2, 0, 1)) train_heatmap = np.transpose(train_heatmap, (2, 0, 1)) return train_img, train_heatmap, train_pts
j = 0 for i, idx_train in enumerate(train_list): if i >= idx_begin and i <= idx_end: j += 1 print(anno[idx_train]) ele_anno = anno[idx_train] path_img = os.path.join(path_img_folder, ele_anno['img_paths']) print(path_img) img_origin = imgutils.load_image(path_img) # plt.figure(1) # plt.imshow(img_origin) # plt.show() img_crop, ary_pts_crop, c_crop = imgutils.crop_norescale(img_origin, ele_anno, use_randscale=False) img_out, pts_out, c_out = imgutils.change_resolu(img_crop, ary_pts_crop, c_crop, res_heatmap) heatmaps = imgutils.generate_heatmaps(img_out, pts_out, sigma_valu=2) # plt.figure(1) # plt.imshow(img_out) # plt.show() train_heatmaps[j - 1, ...] = heatmaps # plt.figure(1) # plt.imshow(train_heatmaps[j-1, :, :, 0]) # plt.show() # imgutils.show_stack_joints(img_out, pts_out, c_out) # print('heatmaps.SHAPE', train_heatmaps[j - 1, ...].shape) # imgutils.show_heatmaps(img_out, train_heatmaps[j - 1, ...], c_out) print(len_idx, '/', j) # Save train_imgs
with open('mpii_annotations.json') as anno_file: anno = json.load(anno_file) for ele in anno: if ele['img_paths'] == '000678817.jpg': #000033016, 000678817, 001834988 ele_copy = ele print('FOUNDED') print(ele) c_copy = ele_copy['objpos'] pts_copy = ele_copy['joint_self'] img_origin = imgutils.load_image('mpii_human_pose_v1/images/000678817.jpg') img_copy = img_origin # img_crop, ary_pts_crop, c_crop = imgutils.crop(img_origin, ele_copy) img_crop, ary_pts_crop, c_crop = imgutils.crop_norescale(img_origin, ele_copy) img_out, pts_out, c_out = imgutils.change_resolu(img_crop, ary_pts_crop, c_crop, (256, 256)) heatmaps = imgutils.generate_heatmaps(img_out, pts_out, sigma_valu=7) # img_out = imgutils.random_rotate(img_out) # heatmaps = imgutils.random_rotate(heatmaps[:,:,:]) # img_out = imgutilsTF.random_flip_tf(img_out) # heatmaps = imgutilsTF.random_flip_tf(heatmaps[:,:,:]) # Show image and heatmaps imgutils.show_stack_joints(img_out, pts_out, c_out) # imgutils.show_heatmaps(img_out, heatmaps, c_out) # plt.figure(1) # plt.imshow(img_out) # plt.show()