Example #1
0
def getFaceTextureCoords(textImag):
    checkpoint_fp = 'models/MobDenseNet.pth.tar'
    arch = 'densemobilenetv4_19'
    checkpoint = torch.load(
        checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
    model = getattr(MobDenseNet, arch)(
        num_classes=62)  # 62 = 12(pose) + 40(shape) +10(expression)
    model_dict = model.state_dict()
    # because the model is trained by multiple gpus, prefix module should be removed
    for k in checkpoint.keys():
        model_dict[k.replace('module.', '')] = checkpoint[k]
    model.load_state_dict(model_dict)
    cudnn.benchmark = True
    model = model.cuda()
    model.eval()
    face_detector = dlib.get_frontal_face_detector()
    # 3. forward
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
    img_ori = textImag
    rects = face_detector(img_ori, 1)
    for rect in rects:
        # - use detected face bbox
        bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
        roi_box = parse_roi_box_from_bbox(bbox)
        img = crop_img(img_ori, roi_box)

        # forward: one step
        img = cv2.resize(img,
                         dsize=(STD_SIZE, STD_SIZE),
                         interpolation=cv2.INTER_LINEAR)
        input = transform(img).unsqueeze(0)
        with torch.no_grad():
            input = input.cuda()
            param = model(input)
            param = param.squeeze().cpu().numpy().flatten().astype(np.float32)

        # 68 pts
        pts68 = predict_68pts(param, roi_box)
        return pts68[[0, 1], :]
Example #2
0
def main(args):
    # 1. load pre-tained model
    checkpoint_fp = 'models/phase1_wpdc_vdc.pth.tar'
    arch = 'mobilenet_1'

    checkpoint = torch.load(
        checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
    model = getattr(mobilenet_v1, arch)(
        num_classes=62)  # 62 = 12(pose) + 40(shape) +10(expression)

    model_dict = model.state_dict()
    # because the model is trained by multiple gpus, prefix module should be removed
    for k in checkpoint.keys():
        model_dict[k.replace('module.', '')] = checkpoint[k]
    model.load_state_dict(model_dict)
    if args.mode == 'gpu':
        cudnn.benchmark = True
        model = model.cuda()
    model.eval()

    # 2. load dlib model for face detection and landmark used for face cropping
    if args.dlib_landmark:
        dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat'
        face_regressor = dlib.shape_predictor(dlib_landmark_model)
    if args.dlib_bbox:
        face_detector = dlib.get_frontal_face_detector()

    # 3. forward
    tri = sio.loadmat('visualize/tri.mat')['tri']
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
    for img_fp in args.files:
        img_ori = cv2.imread(img_fp)
        if args.dlib_bbox:
            rects = face_detector(img_ori, 1)
        else:
            rects = []

        if len(rects) == 0:
            rects = dlib.rectangles()
            rect_fp = img_fp + '.bbox'
            try:
                lines = open(rect_fp).read().strip().split('\n')[1:]
            except FileNotFoundError:
                print('Cannot load bbox file')
                continue
            for l in lines:
                l, r, t, b = [int(_) for _ in l.split(' ')[1:]]
                rect = dlib.rectangle(l, r, t, b)
                rects.append(rect)

        pts_res = []
        Ps = []  # Camera matrix collection
        poses = []  # pose collection, [todo: validate it]
        vertices_lst = []  # store multiple face vertices
        ind = 0
        suffix = get_suffix(img_fp)
        for rect in rects:
            # whether use dlib landmark to crop image, if not, use only face bbox to calc roi bbox for cropping
            if args.dlib_landmark:
                # - use landmark for cropping
                pts = face_regressor(img_ori, rect).parts()
                pts = np.array([[pt.x, pt.y] for pt in pts]).T
                roi_box = parse_roi_box_from_landmark(pts)
            else:
                # - use detected face bbox
                bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
                roi_box = parse_roi_box_from_bbox(bbox)

            img = crop_img(img_ori, roi_box)

            # forward: one step
            img = cv2.resize(img,
                             dsize=(STD_SIZE, STD_SIZE),
                             interpolation=cv2.INTER_LINEAR)
            input = transform(img).unsqueeze(0)
            with torch.no_grad():
                if args.mode == 'gpu':
                    input = input.cuda()
                param = model(input)
                param = param.squeeze().cpu().numpy().flatten().astype(
                    np.float32)

            # 68 pts
            pts68 = predict_68pts(param, roi_box)

            # two-step for more accurate bbox to crop face
            if args.bbox_init == 'two':
                roi_box = parse_roi_box_from_landmark(pts68)
                img_step2 = crop_img(img_ori, roi_box)
                img_step2 = cv2.resize(img_step2,
                                       dsize=(STD_SIZE, STD_SIZE),
                                       interpolation=cv2.INTER_LINEAR)
                input = transform(img_step2).unsqueeze(0)
                with torch.no_grad():
                    if args.mode == 'gpu':
                        input = input.cuda()
                    param = model(input)
                    param = param.squeeze().cpu().numpy().flatten().astype(
                        np.float32)

                pts68 = predict_68pts(param, roi_box)

            pts_res.append(pts68)
            P, pose = parse_pose(param)
            Ps.append(P)
            poses.append(pose)

            # dense face 3d vertices
            if args.dump_ply or args.dump_vertex or args.dump_depth or args.dump_pncc or args.dump_obj:
                vertices = predict_dense(param, roi_box)
                vertices_lst.append(vertices)
            if args.dump_ply:
                dump_to_ply(
                    vertices, tri,
                    '{}_{}.ply'.format(img_fp.replace(suffix, ''), ind))
            if args.dump_vertex:
                dump_vertex(
                    vertices, '{}_{}.mat'.format(img_fp.replace(suffix, ''),
                                                 ind))
            if args.dump_pts:
                wfp = '{}_{}.txt'.format(img_fp.replace(suffix, ''), ind)
                np.savetxt(wfp, pts68, fmt='%.3f')
                print('Save 68 3d landmarks to {}'.format(wfp))
            if args.dump_roi_box:
                wfp = '{}_{}.roibox'.format(img_fp.replace(suffix, ''), ind)
                np.savetxt(wfp, roi_box, fmt='%.3f')
                print('Save roi box to {}'.format(wfp))
            if args.dump_paf:
                wfp_paf = '{}_{}_paf.jpg'.format(img_fp.replace(suffix, ''),
                                                 ind)
                wfp_crop = '{}_{}_crop.jpg'.format(img_fp.replace(suffix, ''),
                                                   ind)
                paf_feature = gen_img_paf(img_crop=img,
                                          param=param,
                                          kernel_size=args.paf_size)

                cv2.imwrite(wfp_paf, paf_feature)
                cv2.imwrite(wfp_crop, img)
                print('Dump to {} and {}'.format(wfp_crop, wfp_paf))
            if args.dump_obj:
                wfp = '{}_{}.obj'.format(img_fp.replace(suffix, ''), ind)
                colors = get_colors(img_ori, vertices)
                write_obj_with_colors(wfp, vertices, tri, colors)
                print('Dump obj with sampled texture to {}'.format(wfp))
            ind += 1

        if args.dump_pose:
            # P, pose = parse_pose(param)  # Camera matrix (without scale), and pose (yaw, pitch, roll, to verify)
            img_pose = plot_pose_box(img_ori, Ps, pts_res)
            wfp = img_fp.replace(suffix, '_pose.jpg')
            cv2.imwrite(wfp, img_pose)
            print('Dump to {}'.format(wfp))
        if args.dump_depth:
            wfp = img_fp.replace(suffix, '_depth.png')
            # depths_img = get_depths_image(img_ori, vertices_lst, tri-1)  # python version
            depths_img = cget_depths_image(img_ori, vertices_lst,
                                           tri - 1)  # cython version
            cv2.imwrite(wfp, depths_img)
            print('Dump to {}'.format(wfp))
        if args.dump_pncc:
            wfp = img_fp.replace(suffix, '_pncc.png')
            pncc_feature = cpncc(img_ori, vertices_lst,
                                 tri - 1)  # cython version
            cv2.imwrite(
                wfp,
                pncc_feature[:, :, ::-1])  # cv2.imwrite will swap RGB -> BGR
            print('Dump to {}'.format(wfp))
        if args.dump_res:
            draw_landmarks(img_ori,
                           pts_res,
                           wfp=img_fp.replace(suffix, '_3DDFA.jpg'),
                           show_flg=args.show_flg)
Example #3
0
    print('len(folder) :', len(folder))

    for item in tqdm(folder):
        try:
            img_ori = cv2.imread(str(folder[item]))
            rects = face_detector(img_ori, 1)

            if len(rects) != 0:
                for rect in rects:
                    bbox = [
                        rect.left(),
                        rect.top(),
                        rect.right(),
                        rect.bottom()
                    ]
                    roi_box = parse_roi_box_from_bbox(bbox)
                    img = crop_img(img_ori, roi_box)
                    img = cv2.resize(img,
                                     dsize=(STD_SIZE, STD_SIZE),
                                     interpolation=cv2.INTER_LINEAR)
                    input = transform(img).unsqueeze(0)
                    with torch.no_grad():
                        if args.mode == 'gpu':
                            input = input.cuda()
                        param = model(input)
                        param = param.squeeze().cpu().numpy().flatten().astype(
                            np.float32)

                vertices_lst = []
                vertices = predict_dense(param, roi_box)
                vertices_lst.append(vertices)
Example #4
0
def get_landmark_2d(root, image_path):
    # 0.read image
    img_ori = cv2.imread(os.path.join(root, image_path))
    # 1. load pre-tained model
    checkpoint_fp = 'models/MobDenseNet.pth.tar'
    arch = 'mobdensenet_v1'
    checkpoint = torch.load(
        checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
    model = getattr(MobDenseNet, arch)(
        num_classes=62)  # 62 = 12(pose) + 40(shape) +10(expression)
    model_dict = model.state_dict()
    if args.mode == 'gpu':
        cudnn.benchmark = True
        model = model.cuda()
    model.eval()
    # 2. load dlib model for face detection and landmark used for face cropping
    if args.dlib_landmark:
        dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat'
        face_regressor = dlib.shape_predictor(dlib_landmark_model)
    if args.dlib_bbox:
        face_detector = dlib.get_frontal_face_detector()
    # 3. forward
    tri = sio.loadmat('visualize/tri.mat')['tri'] - 1
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
    imgScale = 1
    scaledImg = img_ori
    if max(img_ori.shape) > maxImgSizeForDetection:
        imgScale = maxImgSizeForDetection / float(max(img_ori.shape))
        scaledImg = cv2.resize(img_ori, (int(
            img_ori.shape[1] * imgScale), int(img_ori.shape[0] * imgScale)))
    rects = face_detector(scaledImg, 1)
    for rect in rects:
        if args.dlib_landmark:
            faceRectangle = rectangle(int(rect.left() / imgScale),
                                      int(rect.top() / imgScale),
                                      int(rect.right() / imgScale),
                                      int(rect.bottom() / imgScale))
            # - use landmark for cropping
            pts = face_regressor(img_ori, faceRectangle).parts()
            pts = np.array([[pt.x, pt.y] for pt in pts]).T
            roi_box = parse_roi_box_from_landmark(pts)
        else:
            bbox = [
                int(rect.left() / imgScale),
                int(rect.top() / imgScale),
                int(rect.right() / imgScale),
                int(rect.bottom() / imgScale)
            ]
            roi_box = parse_roi_box_from_bbox(bbox)
    img = crop_img(img_ori, roi_box)
    # forward: one step
    img = cv2.resize(img,
                     dsize=(STD_SIZE, STD_SIZE),
                     interpolation=cv2.INTER_LINEAR)
    input = transform(img).unsqueeze(0)
    with torch.no_grad():
        if args.mode == 'gpu':
            input = input.cuda()
        param = model(input)
        param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
    # 68 pts
    pts68 = predict_68pts(param, roi_box)
    return pts68
Example #5
0
def main(args):
    # 1. load pre-tained model
    checkpoint_fp = 'models/phase1_wpdc_vdc.pth.tar'
    arch = 'mobilenet_1'

    checkpoint = torch.load(
        checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
    model = getattr(mobilenet_v1, arch)(
        num_classes=62)  # 62 = 12(pose) + 40(shape) +10(expression)

    model_dict = model.state_dict()
    # because the model is trained by multiple gpus, prefix module should be removed
    for k in checkpoint.keys():
        model_dict[k.replace('module.', '')] = checkpoint[k]
    model.load_state_dict(model_dict)
    if args.mode == 'gpu':
        cudnn.benchmark = True
        model = model.cuda()
    model.eval()

    # 2. load dlib model for face detection and landmark used for face cropping
    if args.dlib_landmark:
        dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat'
        face_regressor = dlib.shape_predictor(dlib_landmark_model)
    if args.dlib_bbox:
        face_detector = dlib.get_frontal_face_detector()

    # 3. forward
    tri = sio.loadmat('visualize/tri.mat')['tri']
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
    files = sorted(
        glob.glob(os.path.join(args.folder, '*.jpg')) +
        glob.glob(os.path.join(args.folder, '*.png')))
    p_bar = tqdm(total=len(files))
    for img_fp in files:

        img_ori = cv2.imread(img_fp)
        if args.dlib_bbox:
            rects = face_detector(img_ori, 1)
        else:
            rects = []

        if len(rects) == 0:
            rects = dlib.rectangles()
            rect_fp = img_fp + '.bbox'
            lines = open(rect_fp).read().strip().split('\n')[1:]
            for l in lines:
                l, r, t, b = [int(_) for _ in l.split(' ')[1:]]
                rect = dlib.rectangle(l, r, t, b)
                rects.append(rect)

        pts_res = []
        Ps = []  # Camera matrix collection
        poses = []  # pose collection, [todo: validate it]
        vertices_lst = []  # store multiple face vertices
        ind = 0
        suffix = get_suffix(img_fp)
        for rect in rects:
            # whether use dlib landmark to crop image, if not, use only face bbox to calc roi bbox for cropping
            if args.dlib_landmark:
                # - use landmark for cropping
                pts = face_regressor(img_ori, rect).parts()
                pts = np.array([[pt.x, pt.y] for pt in pts]).T
                roi_box = parse_roi_box_from_landmark(pts)
            else:
                # - use detected face bbox
                bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
                roi_box = parse_roi_box_from_bbox(bbox)

            img = crop_img(img_ori, roi_box)

            # forward: one step
            img = cv2.resize(img,
                             dsize=(STD_SIZE, STD_SIZE),
                             interpolation=cv2.INTER_LINEAR)
            input_ = transform(img).unsqueeze(0)
            with torch.no_grad():
                if args.mode == 'gpu':
                    input_ = input_.cuda()
                param = model(input_)
                param = param.squeeze().cpu().numpy().flatten().astype(
                    np.float32)

            # 68 pts
            pts68 = predict_68pts(param, roi_box)

            # two-step for more accurate bbox to crop face
            if args.bbox_init == 'two':
                roi_box = parse_roi_box_from_landmark(pts68)
                img_step2 = crop_img(img_ori, roi_box)
                img_step2 = cv2.resize(img_step2,
                                       dsize=(STD_SIZE, STD_SIZE),
                                       interpolation=cv2.INTER_LINEAR)
                input_ = transform(img_step2).unsqueeze(0)
                with torch.no_grad():
                    if args.mode == 'gpu':
                        input_ = input_.cuda()
                    param = model(input_)
                    param = param.squeeze().cpu().numpy().flatten().astype(
                        np.float32)

                pts68 = predict_68pts(param, roi_box)

            pts_res.append(pts68)
            P, pose = parse_pose(param)
            Ps.append(P)
            poses.append(pose)

            points = np.array(pts_res)[0].T

            rotated = eulerAnglesToRotationMatrix(np.array([0., np.pi, 0.]))
            points = points.dot(rotated)

            scaler = MinMaxScaler(feature_range=(-1., 1))
            scaled_points = scaler.fit_transform(points)
            points = scaled_points

            f_name = img_fp.replace(args.folder + '/',
                                    '').replace('.png',
                                                '').replace('.jpg', '')
            np.save('./results/{}.npy'.format(f_name), points.reshape(-1))

            if args.plot:
                plot_face(points, img_fp)
                if args.show_flg:
                    plt.show()
                else:
                    plt.savefig('./results/{}.png'.format(f_name))

            p_bar.update(1)
Example #6
0
def test_video(args):
    start_time = time.time()
    x = 1  # displays the frame rate every 1 second
    counter = 0
    # 1. load pre-tained model
    # checkpoint_fp='models/phase1_wpdc_vdc_v2.pth.tar'
    # arch='mobilenet_1'
    checkpoint_fp = 'models/MobDenseNet.pth.tar'
    arch = 'mobdensenet_v1'
    checkpoint = torch.load(
        checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
    model = getattr(MobDenseNet, arch)(
        num_classes=62)  # 62 = 12(pose) + 40(shape) +10(expression)
    model_dict = model.state_dict()
    # because the model is trained by multiple gpus, prefix module should be removed
    for k in checkpoint.keys():
        model_dict[k.replace('module.', '')] = checkpoint[k]
    model.load_state_dict(model_dict)
    if args.mode == 'gpu':
        cudnn.benchmark = True
        model = model.cuda()
    model.eval()
    # 2. load dlib model for face detection and landmark used for face cropping
    if args.dlib_landmark:
        dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat'
        face_regressor = dlib.shape_predictor(dlib_landmark_model)
    if args.dlib_bbox:
        face_detector = dlib.get_frontal_face_detector()
    # 3. forward
    tri = sio.loadmat('visualize/tri.mat')['tri'] - 1
    tri_pts68 = sio.loadmat('visualize/pats68_tri.mat')['tri']
    textureImg = cv2.imread(image_name)
    cameraImg = cap.read()[1]
    # textureCoords=df.getFaceTextureCoords(textureImg)
    # drawface=Drawing3DFace.Draw3DFace(cameraImg,textureImg,textureCoords,tri_pts68.T)
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
    while True:
        # get a frame
        img_ori = cap.read()[1]
        imgScale = 1
        scaledImg = img_ori
        if max(img_ori.shape) > maxImgSizeForDetection:
            imgScale = maxImgSizeForDetection / float(max(img_ori.shape))
            scaledImg = cv2.resize(img_ori, (int(img_ori.shape[1] * imgScale),
                                             int(img_ori.shape[0] * imgScale)))
        rects = face_detector(scaledImg, 1)

        Ps = []  # Camera matrix collection
        poses = []  # pose collection
        pts_res = []
        # suffix=get_suffix(img_ori)
        for rect in rects:
            if args.dlib_landmark:
                faceRectangle = rectangle(int(rect.left() / imgScale),
                                          int(rect.top() / imgScale),
                                          int(rect.right() / imgScale),
                                          int(rect.bottom() / imgScale))

                # - use landmark for cropping
                pts = face_regressor(img_ori, faceRectangle).parts()
                pts = np.array([[pt.x, pt.y] for pt in pts]).T
                roi_box = parse_roi_box_from_landmark(pts)
            else:
                bbox = [
                    int(rect.left() / imgScale),
                    int(rect.top() / imgScale),
                    int(rect.right() / imgScale),
                    int(rect.bottom() / imgScale)
                ]
                roi_box = parse_roi_box_from_bbox(bbox)
        img = crop_img(img_ori, roi_box)
        # forward: one step
        img = cv2.resize(img,
                         dsize=(STD_SIZE, STD_SIZE),
                         interpolation=cv2.INTER_LINEAR)
        input = transform(img).unsqueeze(0)
        with torch.no_grad():
            if args.mode == 'gpu':
                input = input.cuda()
            param = model(input)
            param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
        # 68 pts
        pts68 = predict_68pts(param, roi_box)
        # df.triDelaunay(pts68)
        densePts = predict_dense(param, roi_box)
        P, pose = parse_pose(param)
        Ps.append(P)
        poses.append(pose)
        # two-step for more accurate bbox to crop face
        if args.bbox_init == 'two':
            roi_box = parse_roi_box_from_landmark(pts68)
            img_step2 = crop_img(img_ori, roi_box)
            img_step2 = cv2.resize(img_step2,
                                   dsize=(STD_SIZE, STD_SIZE),
                                   interpolation=cv2.INTER_LINEAR)
            input = transform(img_step2).unsqueeze(0)
            with torch.no_grad():
                if args.mode == 'gpu':
                    input = input.cuda()
                param = model(input)
                param = param.squeeze().cpu().numpy().flatten().astype(
                    np.float32)
            pts68 = predict_68pts(param, roi_box)
        pts_res.append(pts68)
        pts = []
        #draw landmark
        for indx in range(68):
            pos = (pts68[0, indx], pts68[1, indx])
            pts.append(pos)
            cv2.circle(img_ori, pos, 3, color=(255, 255, 255), thickness=-1)
        ##draw pose box
        if args.dump_pose:
            img_ori = plot_pose_box(img_ori, Ps, pts_res)
        #draw face mesh
        if args.dump_2D_face_mesh:
            img_ori = df.drawMesh(img_ori, densePts.T, tri.T)
        if args.dump_3D_face_mesh:
            pass
            # img=drawface.render(pts68)
        cv2.imshow("faceDetector", img_ori)
        counter += 1
        if (time.time() - start_time) > x:
            print("FPS: ", counter / (time.time() - start_time))
            counter = 0
            start_time = time.time()
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
Example #7
0
def main(args):
    # 1. load pre-trained model
    checkpoint_fp = 'models/phase1_wpdc_vdc.pth.tar'
    arch = 'mobilenet_1'

    checkpoint = torch.load(
        checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
    model = getattr(mobilenet_v1, arch)(
        num_classes=62)  # 62 = 12(pose) + 40(shape) +10(expression)

    model_dict = model.state_dict()
    # because the model is trained by multiple gpus, prefix module should be removed
    for k in checkpoint.keys():
        model_dict[k.replace('module.', '')] = checkpoint[k]
    model.load_state_dict(model_dict)
    if args.mode == 'gpu':
        cudnn.benchmark = True
        model = model.cuda()
    model.eval()

    # 2. load pre-trained model uv-gan
    if args.uvgan:
        if args.checkpoint_uv_gan == "":
            print("Specify the path to checkpoint uv_gan")
            exit()
        uvgan = infer_uv_gan.UV_GAN(args.checkpoint_uv_gan)

    # 3. load dlib model for face detection and landmark used for face cropping
    if args.dlib_landmark:
        dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat'
        face_regressor = dlib.shape_predictor(dlib_landmark_model)
    if args.dlib_bbox:
        face_detector = dlib.get_frontal_face_detector()

    # 4. forward
    tri = sio.loadmat('visualize/tri.mat')['tri']
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
    for img_fp in args.files:
        img_ori = cv2.imread(img_fp)
        if args.dlib_bbox:
            rects = face_detector(img_ori, 1)
        else:
            rects = []

        if len(rects) == 0:
            rects = dlib.rectangles()
            rect_fp = img_fp + '.bbox'
            lines = open(rect_fp).read().strip().split('\n')[1:]
            for l in lines:
                l, r, t, b = [int(_) for _ in l.split(' ')[1:]]
                rect = dlib.rectangle(l, r, t, b)
                rects.append(rect)

        pts_res = []
        Ps = []  # Camera matrix collection
        poses = []  # pose collection, [todo: validate it]
        vertices_lst = []  # store multiple face vertices
        ind = 0
        suffix = get_suffix(img_fp)
        for rect in rects:
            # whether use dlib landmark to crop image, if not, use only face bbox to calc roi bbox for cropping
            if args.dlib_landmark:
                # - use landmark for cropping
                pts = face_regressor(img_ori, rect).parts()
                pts = np.array([[pt.x, pt.y] for pt in pts]).T
                roi_box = parse_roi_box_from_landmark(pts)
            else:
                # - use detected face bbox
                bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
                roi_box = parse_roi_box_from_bbox(bbox)

            img = crop_img(img_ori, roi_box)

            # forward: one step
            img = cv2.resize(img,
                             dsize=(STD_SIZE, STD_SIZE),
                             interpolation=cv2.INTER_LINEAR)
            input = transform(img).unsqueeze(0)
            with torch.no_grad():
                if args.mode == 'gpu':
                    input = input.cuda()
                param = model(input)
                param = param.squeeze().cpu().numpy().flatten().astype(
                    np.float32)

            # 68 pts
            pts68 = predict_68pts(param, roi_box)

            # two-step for more accurate bbox to crop face
            if args.bbox_init == 'two':
                roi_box = parse_roi_box_from_landmark(pts68)
                img_step2 = crop_img(img_ori, roi_box)
                img_step2 = cv2.resize(img_step2,
                                       dsize=(STD_SIZE, STD_SIZE),
                                       interpolation=cv2.INTER_LINEAR)
                input = transform(img_step2).unsqueeze(0)
                with torch.no_grad():
                    if args.mode == 'gpu':
                        input = input.cuda()
                    param = model(input)
                    param = param.squeeze().cpu().numpy().flatten().astype(
                        np.float32)

                pts68 = predict_68pts(param, roi_box)

            pts_res.append(pts68)
            P, pose = parse_pose(param)

            Ps.append(P)
            poses.append(pose)

            if args.dump_obj:
                vertices = predict_dense(param, roi_box)
                vertices_lst.append(vertices)
                wfp = '{}_{}.obj'.format(img_fp.replace(suffix, ''), ind)
                colors = get_colors(img_ori, vertices)

                p, offset, alpha_shp, alpha_exp = _parse_param(param)

                vertices = (u + w_shp @ alpha_shp + w_exp @ alpha_exp).reshape(
                    3, -1, order='F') + offset
                vertices = vertices.T
                tri = tri.T - 1
                print('Dump obj with sampled texture to {}'.format(wfp))
                unwraps = create_unwraps(vertices)
                h, w = args.height, args.width
                tcoords = process_uv(unwraps[:, :2], h, w)
                texture = render_colors(tcoords, tri, colors, h, w,
                                        c=3).astype('uint8')
                scaled_tcoords = scale_tcoords(tcoords)
                if args.uvgan:
                    texture = uvgan.infer(texture)
                else:
                    texture = cv2.cvtColor(texture, cv2.COLOR_BGR2RGB)
                vertices, colors, uv_coords = vertices.astype(
                    np.float32).copy(), colors.astype(
                        np.float32).copy(), scaled_tcoords.astype(
                            np.float32).copy()
                write_obj_with_colors_texture(wfp, vertices, colors, tri,
                                              texture * 255.0, uv_coords)

            ind += 1
Example #8
0
def main(args):
    # 1. load pre-tained model
    checkpoint_fp = 'models/phase1_wpdc_vdc.pth.tar'
    arch = 'mobilenet_1'

    app = RenderPipeline(**cfg)

    checkpoint = torch.load(
        checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
    model = getattr(mobilenet_v1, arch)(
        num_classes=62)  # 62 = 12(pose) + 40(shape) +10(expression)

    model_dict = model.state_dict()
    # because the model is trained by multiple gpus, prefix module should be removed
    for k in checkpoint.keys():
        model_dict[k.replace('module.', '')] = checkpoint[k]
    model.load_state_dict(model_dict)
    if args.mode == 'gpu':
        cudnn.benchmark = True
        model = model.cuda()
    model.eval()

    face_detector = dlib.get_frontal_face_detector()

    # 3. forward
    tri = sio.loadmat('tri_refine.mat')['tri']
    tri = _to_ctype(tri).astype(np.int32)  # for type compatible
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])

    last_frame_lmks = []

    vc = cv2.VideoCapture("C:\\Users\\zh13\\Videos\\TrackingTest.mov")
    success, frame = vc.read()
    while success:
        roi_box = []

        if len(last_frame_lmks) == 0:
            rects = face_detector(frame, 1)
            for rect in rects:
                bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
                roi_box.append(parse_roi_box_from_bbox(bbox))
        else:
            for lmk in last_frame_lmks:
                roi_box.append(parse_roi_box_from_landmark(lmk))

        this_frame_lmk = []
        params = []
        for box in roi_box:
            img_to_net = crop_img(frame, box)
            img_to_net = cv2.resize(img_to_net,
                                    dsize=(STD_SIZE, STD_SIZE),
                                    interpolation=cv2.INTER_LINEAR)
            input = transform(img_to_net).unsqueeze(0)
            with torch.no_grad():
                if args.mode == 'gpu':
                    input = input.cuda()
                param = model(input)
                param = param.squeeze().cpu().numpy().flatten().astype(
                    np.float32)
                params.append(param)
            this_frame_lmk.append(predict_68pts(param, box))
        last_frame_lmks = this_frame_lmk

        if args.render_mesh:
            for box, param in zip(roi_box, params):
                vertices = predict_dense(param, box)
                frame = app(_to_ctype(vertices.T), tri,
                            _to_ctype(frame.astype(np.float32) / 255.))
        else:
            for lmk in last_frame_lmks:
                for p in lmk.T:
                    cv2.circle(frame, (int(round(p[0] * draw_multiplier)),
                                       int(round(p[1] * draw_multiplier))),
                               draw_multiplier, (255, 0, 0), 1, cv2.LINE_AA,
                               draw_shiftbits)
        cv2.imshow("3ddfa video demo", frame)
        cv2.waitKey(1)
        success, frame = vc.read()
Example #9
0
def classify(model, inputs):
    in_img = inputs['photo']
    img_ori = np.array(in_img)
    img_fp = 'samples/test1.jpg'

    face_detector = dlib.get_frontal_face_detector()

    # 3. forward
    tri = sio.loadmat('visualize/tri.mat')['tri']
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
    #print(transform)
    rects = face_detector(img_ori, 1)

    pts_res = []
    Ps = []  # Camera matrix collection
    poses = []  # pose collection, [todo: validate it]
    vertices_lst = []  # store multiple face vertices
    ind = 0
    suffix = get_suffix(img_fp)
    for rect in rects:
        # - use detected face bbox
        bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
        roi_box = parse_roi_box_from_bbox(bbox)

        img = crop_img(img_ori, roi_box)

        # forward: one step
        img = cv2.resize(img,
                         dsize=(STD_SIZE, STD_SIZE),
                         interpolation=cv2.INTER_LINEAR)
        input = transform(img).unsqueeze(0)
        print(input)
        with torch.no_grad():

            if mode == 'gpu':
                input = input.cuda()

            param = model(input)
            param = param.squeeze().cpu().numpy().flatten().astype(np.float32)

        # 68 pts
        pts68 = predict_68pts(param, roi_box)

        # two-step for more accurate bbox to crop face
        if bbox_init == 'two':
            roi_box = parse_roi_box_from_landmark(pts68)
            img_step2 = crop_img(img_ori, roi_box)
            img_step2 = cv2.resize(img_step2,
                                   dsize=(STD_SIZE, STD_SIZE),
                                   interpolation=cv2.INTER_LINEAR)
            input = transform(img_step2).unsqueeze(0)
            with torch.no_grad():
                if mode == 'gpu':
                    input = input.cuda()
                param = model(input)
                param = param.squeeze().cpu().numpy().flatten().astype(
                    np.float32)

            pts68 = predict_68pts(param, roi_box)

        pts_res.append(pts68)
        P, pose = parse_pose(param)
        Ps.append(P)
        poses.append(pose)

        vertices = predict_dense(param, roi_box)
        vertices_lst.append(vertices)
        ind += 1

    pncc_feature = cpncc(img_ori, vertices_lst, tri - 1)
    output = pncc_feature[:, :, ::-1]
    print(type(output))
    pilImg = transforms.ToPILImage()(np.uint8(output))

    return {"image": pilImg}