def conv_net(x): conv1 = conv_layer(x, [5, 5, 3, 64]) conv1 = dropout_layer(conv1, keep_prob) pool1 = pool_layer(conv1, ksize=[1, 3, 3, 1]) conv2 = conv_layer(pool1, [5, 5, 64, 64]) conv2 = dropout_layer(conv2, keep_prob) pool2 = pool_layer(conv2, ksize=[1, 3, 3, 1]) conv3 = conv_layer(pool2, [5, 5, 64, 64]) conv3 = dropout_layer(conv3, keep_prob) pool3 = pool_layer(conv3, ksize=[1, 3, 3, 1]) reshaped, reshaped_shape = change_to_fc(pool3) fc1 = fc_layer(reshaped, reshaped_shape, 384) fc1 = dropout_layer(fc1, keep_prob) fc2 = fc_layer(fc1, 384, 192) fc2 = dropout_layer(fc2, keep_prob) out = fc_layer(fc2, 192, 10, act='softmax', std=0.005) return out
def conv_net(x): conv1 = conv_layer(x, [3, 3, 1, 64], 64) conv1 = dropout_layer(conv1, 1.0) conv2 = conv_layer(conv1, [3, 3, 64, 64], 64) conv2 = dropout_layer(conv2, 0.9) pool1 = pool_layer(conv2) reshaped, reshaped_shape = change_to_fc(pool1) fc1 = fc_layer(reshaped, reshaped_shape, 1024) fc1 = dropout_layer(fc1, 0.9) out = fc_layer(fc1, 1024, 10, act='softmax') return out
def __init__(self, input_shape=[128, 96, 96, 1], n_filter=[32, 64, 128], n_hidden=[500, 500], n_y=30, receptive_field=[[3, 3], [2, 2], [2, 2]], pool_size=[[2, 2], [2, 2], [2, 2]], obj_fcn=mse): self._sanity_check(input_shape, n_filter, receptive_field, pool_size) x_shape = input_shape[:] x_shape[0] = None x = tf.placeholder(shape=x_shape, dtype=tf.float32) y = tf.placeholder(shape=(None, n_y), dtype=tf.float32) self.x, self.y = x, y # ========= CNN layers ========= n_channel = [input_shape[-1]] + n_filter for i in range(len(n_channel) - 1): filter_shape = receptive_field[i] + n_channel[ i:i + 2] # e.g. [5, 5, 32, 64] pool_shape = [1] + pool_size[i] + [1] print 'Filter shape (layer %d): %s' % (i, filter_shape) conv_and_filter = conv_layer(x, filter_shape, 'conv%d' % i, padding='VALID') print 'Shape after conv: %s' % conv_and_filter.get_shape().as_list( ) # norm1 = tf.nn.local_response_normalization( # conv_and_filter, 4, bias=1.0, alpha=0.001 / 9.0, # beta=0.75, name='norm%d'%i) pool1 = tf.nn.max_pool( #norm1, conv_and_filter, ksize=pool_shape, strides=pool_shape, padding='SAME', name='pool%d' % i) print 'Shape after pooling: %s' % pool1.get_shape().as_list() x = pool1 # ========= Fully-connected layers ========= dim = np.prod(x.get_shape()[1:].as_list()) x = tf.reshape(x, [-1, dim]) print 'Total dim after CNN: %d' % dim for i, n in enumerate(n_hidden): x = full_layer(x, n, layer_name='full%d' % i) # nonlinear=tf.nn.relu yhat = full_layer(x, n_y, layer_name='output', nonlinear=tf.identity) self.yhat = yhat self.batch_size = input_shape[0] self.lr = tf.placeholder(dtype=tf.float32) self.objective = sigmoidCE(y, yhat) self.optimizer = tf.train.AdamOptimizer(self.lr).minimize( self.objective) tf.scalar_summary(self.objective.op.name, self.objective) self.sess = tf.Session(config=config)
def __init__(self, input_shape, n_filter, n_hidden, n_y_landmark, n_y_attribute, receptive_field, pool_size, apply_cross_stitch, apply_weight_reg, attribute, logdir): print('Attribute: ' + attribute) print('Storing in ' + logdir) self._sanity_check(input_shape, n_filter, receptive_field, pool_size) x_shape = input_shape[:] x_shape[0] = None x = tf.placeholder(shape=x_shape, dtype=tf.float32) y_landmark = tf.placeholder(shape=(None, n_y_landmark), dtype=tf.float32) y_attribute = tf.placeholder(shape=(None, n_y_attribute), dtype=tf.float32) self.x, self.y_landmark, self.y_attribute = x, y_landmark, y_attribute # Loss self.objective = 0 # ========= CNN layers ========= x_1, x_2 = x, x n_channel = [input_shape[-1]] + n_filter for i in range(len(n_channel) - 1): filter_shape = receptive_field[i] + n_channel[ i:i + 2] # e.g. [5, 5, 32, 64] pool_shape = [1] + pool_size[i] + [1] print 'Filter shape (layer %d): %s' % (i, filter_shape) # Convolutional layers conv_and_filter_1 = conv_layer(x_1, filter_shape, 'conv%d_%d' % (i, 1), padding='VALID') conv_and_filter_2 = conv_layer(x_2, filter_shape, 'conv%d_%d' % (i, 2), padding='VALID') print 'Shape after conv: %s' % conv_and_filter_1.get_shape( ).as_list() # Batch normalization # norm1 = tf.nn.local_response_normalization( # conv_and_filter_1, 4, bias=1.0, alpha=0.001 / 9.0, # beta=0.75, name='norm%d_%d'%(i,1)) # norm2 = tf.nn.local_response_normalization( # conv_and_filter_2, 4, bias=1.0, alpha=0.001 / 9.0, # beta=0.75, name='norm%d_%d'%(i,2)) # Pooling layer pool_1 = tf.nn.max_pool( #norm1, conv_and_filter_1, ksize=pool_shape, strides=pool_shape, padding='SAME', name='pool%d_%d' % (i, 1)) pool_2 = tf.nn.max_pool( #norm1, conv_and_filter_2, ksize=pool_shape, strides=pool_shape, padding='SAME', name='pool%d_%d' % (i, 2)) print 'Shape after pooling: %s' % pool_1.get_shape().as_list() # Cross stitch if apply_cross_stitch[i]: channels = n_channel[i + 1] x_1 = tf.add(tf.multiply(pool_1, tf.Variable(tf.multiply(0.9, tf.ones([channels])), name='alpha%d_%d' % (i,11)), name='mul%d_%d' % (i,11)), \ tf.multiply(pool_2, tf.Variable(tf.multiply(0.1, tf.ones([channels])), name='alpha%d_%d' % (i,12)), name='mul%d_%d' % (i,12)), \ name='add%d_%d' % (i,1)) x_2 = tf.add(tf.multiply(pool_2, tf.Variable(tf.multiply(0.9, tf.ones([channels])), name='alpha%d_%d' % (i,21)), name='mul%d_%d' % (i,21)), \ tf.multiply(pool_1, tf.Variable(tf.multiply(0.1, tf.ones([channels])), name='alpha%d_%d' % (i,22)), name='mul%d_%d' % (i,22)), \ name='add%d_%d' % (i,2)) else: x_1 = pool_1 x_2 = pool_2 # ========= Fully-connected layers ========= dim_1 = np.prod(x_1.get_shape()[1:].as_list()) x_1 = tf.reshape(x_1, [-1, dim_1]) dim_2 = np.prod(x_2.get_shape()[1:].as_list()) x_2 = tf.reshape(x_2, [-1, dim_2]) print 'Total dim after CNN: %d' % dim_1 for i, n in enumerate(n_hidden): i += len(n_channel) - 1 fl_1 = full_layer(x_1, n, layer_name='full%d_%d' % (i, 1)) # nonlinear=tf.nn.relu fl_2 = full_layer(x_2, n, layer_name='full%d_%d' % (i, 2)) # nonlinear=tf.nn.relu # Cross stitch if apply_cross_stitch[i]: print(i) x_1 = tf.add(tf.multiply(fl_1, tf.Variable(tf.multiply(0.9, tf.ones([1])), name='alpha%d_%d' % (i,11)), name='mul%d_%d' % (i,11)), \ tf.multiply(fl_2, tf.Variable(tf.multiply(0.1, tf.ones([1])), name='alpha%d_%d' % (i,12)), name='mul%d_%d' % (i,12)), \ name='add%d_%d' % (i,1)) x_2 = tf.add(tf.multiply(fl_2, tf.Variable(tf.multiply(0.9, tf.ones([1])), name='alpha%d_%d' % (i,21)), name='mul%d_%d' % (i,21)), \ tf.multiply(fl_1, tf.Variable(tf.multiply(0.1, tf.ones([1])), name='alpha%d_%d' % (i,22)), name='mul%d_%d' % (i,22)), \ name='add%d_%d' % (i,2)) else: x_1 = fl_1 x_2 = fl_2 yhat_1 = full_layer(x_1, n_y_landmark, layer_name='output_1', nonlinear=tf.identity) yhat_2 = full_layer(x_2, n_y_attribute, layer_name='output_2', nonlinear=tf.identity) self.yhat_1 = yhat_1 self.yhat_2 = yhat_2 self.batch_size = input_shape[0] self.lr = tf.placeholder(dtype=tf.float32) self.objective_1 = mse(y_landmark, yhat_1) if attribute == 'all': self.objective_2 = sigmoidCE(y_attribute, yhat_2) else: self.objective_2 = softmaxCE(y_attribute, yhat_2) self.obj1_lambda = 1000.0 self.objective = self.obj1_lambda * self.objective_1 + self.objective_2 # Weight regularization self.weight_lambda = 1.0 for i in range(len(n_filter)): if apply_weight_reg[i]: w1 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='conv%d_%d' % (i, 1))[0] w2 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='conv%d_%d' % (i, 2))[0] a = tf.Variable(tf.multiply(1.0, tf.ones([1])), name='a_w%d' % i) b = tf.Variable(tf.add(0.0, tf.zeros([1])), name='b_w%d' % i) w1 = tf.add(tf.multiply(a, w1, name='mul%d' % i), b, name='add%d' % i) loss = tf.nn.l2_loss(tf.subtract(w1, w2, name='sub_conv%d' % i), name='l2_conv%d' % i) self.objective = tf.add(self.objective, tf.multiply(self.weight_lambda, loss, name='mul_w%d' % i), name='add_w%d' % i) for i in range(len(n_filter), len(n_filter) + len(n_hidden)): if apply_weight_reg[i]: w1 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='full%d_%d' % (i, 1))[0] w2 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='full%d_%d' % (i, 2))[0] a = tf.Variable(tf.multiply(1.0, tf.ones([1])), name='a_w%d' % i) b = tf.Variable(tf.add(0.0, tf.zeros([1])), name='b_w%d' % i) w1 = tf.add(tf.multiply(a, w1, name='mul%d' % i), b, name='add%d' % i) loss = tf.nn.l2_loss(tf.subtract(w1, w2, name='sub_fc%d' % i), name='l2_fc%d' % i) self.objective = tf.add(self.objective, tf.multiply(self.weight_lambda, loss, name='mul_w%d' % i), name='add_w%d' % i) self.optimizer = tf.train.AdamOptimizer(self.lr).minimize( self.objective) tf.summary.scalar(self.objective.op.name, self.objective) self.sess = tf.Session(config=config) if attribute == 'all': correct_pred = tf.equal(tf.greater(y_attribute, 0), tf.greater(yhat_2, 0)) else: correct_pred = tf.equal(tf.argmax(y_attribute, 1), tf.argmax(yhat_2, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) self.logdir = logdir self.attribute = attribute self.layer_num = len(n_filter) + len(n_hidden)
def __init__(self, input_shape, n_filter, n_hidden, n_y_landmark, n_y_attribute, receptive_field, pool_size, attribute, logdir): print('Attribute: ' + attribute) print('Storing in ' + logdir) self._sanity_check(input_shape, n_filter, receptive_field, pool_size) x_shape = input_shape[:] x_shape[0] = None x = tf.placeholder(shape=x_shape, dtype=tf.float32) y_landmark = tf.placeholder(shape=(None, n_y_landmark), dtype=tf.float32) y_attribute = tf.placeholder(shape=(None, n_y_attribute), dtype=tf.float32) self.x, self.y_landmark, self.y_attribute = x, y_landmark, y_attribute # Loss self.objective = 0 # ========= CNN layers ========= n_channel = [input_shape[-1]] + n_filter for i in range(len(n_channel) -1): filter_shape = receptive_field[i] + n_channel[i:i+2] # e.g. [5, 5, 32, 64] pool_shape = [1] + pool_size[i] + [1] print 'Filter shape (layer %d): %s' % (i, filter_shape) # Convolutional layers conv_and_filter = conv_layer(x, filter_shape, 'conv%d' % i, padding='VALID') print 'Shape after conv: %s' % conv_and_filter.get_shape().as_list() # Batch normalization # norm1 = tf.nn.local_response_normalization( # conv_and_filter, 4, bias=1.0, alpha=0.001 / 9.0, # beta=0.75, name='norm%d_%d'%(i,1)) # Pooling layer pool = tf.nn.max_pool( #norm1, conv_and_filter, ksize=pool_shape, strides=pool_shape, padding='SAME', name='pool%d' % i) print 'Shape after pooling: %s' % pool.get_shape().as_list() x = pool # ========= Fully-connected layers ========= dim = np.prod(x.get_shape()[1:].as_list()) x = tf.reshape(x, [-1, dim]) print 'Total dim after CNN: %d' % dim for i, n in enumerate(n_hidden): x = full_layer(x, n, layer_name='full%d' % i) # nonlinear=tf.nn.relu yhat_1 = full_layer(x, n_y_landmark, layer_name='output_1', nonlinear=tf.identity) yhat_2 = full_layer(x, n_y_attribute, layer_name='output_2', nonlinear=tf.identity) self.yhat_1 = yhat_1 self.yhat_2 = yhat_2 self.batch_size = input_shape[0] self.lr = tf.placeholder(dtype=tf.float32) self.objective_1 = mse(y_landmark, yhat_1) if attribute == "all": self.objective_2 = sigmoidCE(y_attribute, yhat_2) else: self.objective_2 = softmaxCE(y_attribute, yhat_2) self.obj1_lambda = 200 self.objective = self.obj1_lambda * self.objective_1 + self.objective_2 self.optimizer = tf.train.AdamOptimizer(self.lr).minimize(self.objective) tf.summary.scalar(self.objective.op.name, self.objective) self.sess = tf.Session(config=config) correct_pred = tf.equal(tf.argmax(y_attribute, 1), tf.argmax(yhat_2, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) self.logdir = logdir self.attribute = attribute