Example #1
0
def day_map_plot(config_dict):
    hdf_fn = config_dict.get("hdf_fn")
    fig_fp = config_dict.get("fig_fp")
    area_extent = config_dict.get("area_extent")
    dataset_name = config_dict.get("dataset_name")
    colorbar_title = config_dict.get("colorbar_title")
    title = config_dict.get("title")

    llcrnrlon = area_extent[1]
    llcrnrlat = area_extent[0]
    urcrnrlon = area_extent[3]
    urcrnrlat = area_extent[2]
    projection = "cyl"
    lon_0 = ((area_extent[3] - area_extent[1]) / 2) + area_extent[1]
    lat_0 = ((area_extent[2] - area_extent[0]) / 2) + area_extent[0]

    hdf_reader = HDFReader(hdf_fn)
    pred = hdf_reader.get_dataset(dataset_name)
    fill_value = hdf_reader.get_dataset_attr(dataset_name, "FillValue")
    pred[pred == fill_value] = np.nan
    pred = np.flipud(pred)

    map_drawer = PMMap(llcrnrlon, llcrnrlat, urcrnrlon, urcrnrlat, projection,
                       lon_0, lat_0)
    map_drawer.add_data2D(pred, colorbar_title, title)

    map_drawer.save_fig(fig_fp)
Example #2
0
def day_scatter_plot(config_dict):
    fig_fp = config_dict.get("fig_fp")
    os.makedirs(os.path.basename(fig_fp), exist_ok=True)
    hdf_fp = config_dict.get("hdf_fp")

    actual = config_dict.get("actual")
    pred = config_dict.get("pred")
    area_extent = config_dict.get("area_extent")
    res = config_dict.get("res")
    title = config_dict.get("title")
    x_label = config_dict.get("x_label")
    y_label = config_dict.get("y_label")

    dst_lat, dst_lon = get_roi_latlon(area_extent, res)

    gbl_line, gbl_pixel = get_roi_rcs(dst_lat, dst_lon)

    hdf_reader = HDFReader(hdf_fp)
    pred_data = hdf_reader.get_dataset(pred)
    actual_data = hdf_reader.get_dataset(actual)
    fill_val = hdf_reader.get_dataset_attr(pred, "FillValue")

    actual_data = actual_data[gbl_line, gbl_pixel]
    pred_data = pred_data[gbl_line, gbl_pixel]

    mask = actual_data != fill_val
    mask &= pred_data != fill_val

    pred_data = pred_data[mask]
    actual_data = actual_data[mask]

    pm_scatter = PMScatter()
    pm_scatter.draw(actual_data, pred_data, title, x_label, y_label, fig_fp)
Example #3
0
    def mapping(self, mersi_fn, dataset_name, dst_lon, dst_lat):
        h5_reader = HDFReader(mersi_fn)
        data = self.mask_scale(dataset_name, h5_reader)

        warped_data = self.down_sample(data, dst_lat, dst_lon)

        self.__dataset_dict[dataset_name] = warped_data
        self.__dataset_attr_dict[dataset_name] = {
            "long_name": h5_reader.get_dataset_attr(dataset_name, "long_name"),
            "units": h5_reader.get_dataset_attr(dataset_name, "units"),
            "Slope": 1,
            "Intercept": 0,
            "FillValue": -32767,
            "valid_range": self.__valid_range_dict.get(dataset_name)
        }

        return self.__dataset_dict, self.__dataset_attr_dict
Example #4
0
    def minmax(self, f):
        hdf_reader = HDFReader(f)
        for name in self.vr_dict.keys():
            data = hdf_reader.get_dataset(name)
            fill_val = hdf_reader.get_dataset_attr(name, "FillValue")

            if len(data[data != fill_val]) == 0:
                continue

            max_val = data[data != fill_val].max()
            min_val = data[data != fill_val].min()

            if max_val > self.vr_dict.get(name)[1]:
                self.vr_dict[name][1] = max_val

            if min_val < self.vr_dict.get(name)[0]:
                self.vr_dict[name][0] = min_val
Example #5
0
def get_roi_mean_df(actual, gbl_line, gbl_pixel, hdf_list, pred):
    df = pd.DataFrame(columns=["date", actual, pred])
    for idx, f in enumerate(sorted(hdf_list)):
        hdf_reader = HDFReader(f)
        df_c = pd.DataFrame(columns=["date", actual, pred])
        date_str = os.path.basename(f)[:8]
        fill_value = hdf_reader.get_dataset_attr(actual, "FillValue")
        pm25 = hdf_reader.get_dataset(actual)[gbl_line, gbl_pixel]
        pm25[pm25 == fill_value] = np.nan
        pred_pm25 = hdf_reader.get_dataset(pred)[gbl_line, gbl_pixel]
        pred_pm25[pred_pm25 == fill_value] = np.nan
        df_c.loc[idx, "date"] = date_str
        df_c.loc[idx, actual] = np.nanmean(pm25)
        df_c.loc[idx, pred] = np.nanmean(pred_pm25)

        df = df.append(df_c, ignore_index=True)
        df = df.dropna()
    return df
Example #6
0
File: demo.py Project: code12ab/PMs
def write_result_to_hdf(pred_data, pred_target, cur_fp, out_dir, out_vars):
    vars_dict = dict()
    vars_attrs_dict = dict()
    h5_reader = HDFReader(cur_fp)
    gbl_attrs = h5_reader.get_global_attrs()

    for key in out_vars:
        data = h5_reader.get_dataset(key)

        if key == "demo_flag":
            pred_data_attrs = h5_reader.get_dataset_attrs(pred_target)
            pred_data_attrs["long_name"] = pred_target + " from PMNet"
            vars_dict["Pred_" + pred_target] = pred_data
            vars_attrs_dict["Pred_" + pred_target] = pred_data_attrs

        vars_dict[key] = data
        vars_attrs_dict[key] = h5_reader.get_dataset_attrs(key)

    os.makedirs(out_dir, exist_ok=True)
    h5_writer = HDFWriter(os.path.join(out_dir, os.path.basename(cur_fp)))
    h5_writer.set_global_attrs(gbl_attrs)

    for key in vars_dict.keys():
        data = vars_dict.get(key)
        data_attrs = vars_attrs_dict.get(key)
        h5_writer.create_dataset(key, data_attrs, data, data.dtype)
Example #7
0
def get_season_year_mean_data_dict(hdf_lst, dataset_name):
    result_dict = dict()
    season_fp_dict = dict()
    for season in ["spring", "summer", "autumn", "winter"]:
        season_fp_dict[season] = list()
    for f in hdf_lst:
        mon = str(int(os.path.basename(f)[4:6]))
        if str(mon) in ["3", "4", "5"]:
            season_fp_dict["spring"].append(f)
        elif str(mon) in ["6", "7", "8"]:
            season_fp_dict["summer"].append(f)
        elif str(mon) in ["9", "10", "11"]:
            season_fp_dict["autumn"].append(f)
        else:
            season_fp_dict["winter"].append(f)

    year_data_lst = list()
    for key in season_fp_dict.keys():
        season_data_lst = list()
        for f in season_fp_dict.get(key):
            hdf_reader = HDFReader(f)
            pred = hdf_reader.get_dataset(dataset_name)
            fill_value = hdf_reader.get_dataset_attr(dataset_name, "FillValue")
            pred[pred == fill_value] = np.nan
            season_data_lst.append(pred)

        season_data = np.asarray(season_data_lst)
        season_mean = np.nanmean(season_data, axis=0)
        season_mean = np.flipud(season_mean)
        result_dict[key] = season_mean
        year_data_lst.append(season_mean)

    year_data = np.asarray(year_data_lst)
    year_mean = np.nanmean(year_data, axis=0)
    result_dict["year"] = year_mean
    return result_dict
Example #8
0
def test_HDFReader():
    hdf_fn = r"D:\01-work_directory\03-PM2.5\PMs\data\MERSI\FY3D_MERSI_GBAL_L2_AOD_MLT_GLL_20180817_POAD_5000M_MS.HDF"
    h_reader = HDFReader(hdf_fn)
    data = h_reader.get_dataset("AOT_550_Mean")
    slope = h_reader.get_dataset_attr("AOT_550_Mean", "Slope")
    global_attrs = h_reader.get_global_attrs()
    print(global_attrs)
    aod_attrs = h_reader.get_dataset_attrs("AOT_550_Mean")
    print(aod_attrs)
    print(data.shape)
    print(slope)
Example #9
0
def dataset_format(ds_fst, scalar_f, out_fd):
    os.makedirs(out_fd, exist_ok=True)
    vr_dict = json_loader(scalar_f)

    for f in tqdm.tqdm(ds_fst, ascii=True, desc="dataset format"):
        hdf_reader = HDFReader(f)
        gbl_attrs = hdf_reader.get_global_attrs()

        hdf_writer = HDFWriter(os.path.join(out_fd, os.path.basename(f)))
        hdf_writer.set_global_attrs(gbl_attrs)

        names = hdf_reader.get_dataset_names()
        for name in names:
            data = hdf_reader.get_dataset(name)
            attrs = hdf_reader.get_dataset_attrs(name)
            if name in vr_dict.keys():
                attrs["valid_range"] = vr_dict.get(name)

            hdf_writer.create_dataset(name, attrs, data, data.dtype)