Example #1
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument("--config",
                        help="A yaml config file. Must always be specified.",
                        required=True)
    parser.add_argument("--loop",
                        help="If set, then runs in an endless loop.",
                        required=False,
                        action="store_true")
    args = parser.parse_args()
    do_loop = args.loop is True

    # Init logging and adjust log levels for some classes.
    init_logging()
    logger = get_named_logger("{}.main".format(
        os.path.splitext(os.path.basename(__file__))[0]))
    get_class_logger(GameController).setLevel(
        logging.INFO)  # Don't log specifics of a single game

    # Load config and check experiment dir.
    logger.info(f'Loading config from "{args.config}"...')
    config = load_config(args.config)
    experiment_dir = config["experiment_dir"]
    while not os.path.exists(experiment_dir):
        logger.warn(
            f'The experiment dir specified in the config does yet not exist: "{experiment_dir}" - waiting...'
        )
        sleep(10)

    agent_checkpoint_paths = {
        i: os.path.join(experiment_dir, name)
        for i, name in config["training"]["agent_checkpoint_names"].items()
    }

    while True:
        # Wait until a ".for_eval" checkpoint exists (for any of possibly multiple agents). Then rename it to ".in_eval.[uniqueid]".
        # In this way, multiple eval scripts can run in parallel.
        # When the evaluation is done, we will rename it to ".{score}".

        for i_agent, cp_path in agent_checkpoint_paths.items():
            # If multiple agents are specified in the config, evaluate all of them.

            checkpoint_path_in = f"{os.path.splitext(cp_path)[0]}.for_eval.h5"
            checkpoint_path_tmp = f"{os.path.splitext(cp_path)[0]}.in_eval.pid{os.getpid()}.h5"
            if os.path.exists(checkpoint_path_in):
                # Load the latest checkpoint and evaluate it

                try:
                    os.rename(checkpoint_path_in, checkpoint_path_tmp)
                    logger.info('Found a new checkpoint, evaluating...')

                    # Create agent
                    agent_type = config["training"]["player_agents"][i_agent]
                    if agent_type == "DQNAgent":
                        alphasheep_agent = DQNAgent(0,
                                                    config=config,
                                                    training=False)
                    else:
                        raise ValueError(
                            f"Unknown agent type specified: {agent_type}")
                    alphasheep_agent.load_weights(checkpoint_path_tmp)

                    # Eval agent
                    current_perf = eval_agent(alphasheep_agent)

                    # Now we know the performance. Find best-performing previous checkpoint that exists on disk
                    logger.info(
                        "Comparing performance to previous checkpoints...")
                    splitext = os.path.splitext(cp_path)
                    checkpoints = glob.glob("{}-*{}".format(
                        splitext[0], splitext[1]))
                    best_perf = 0.
                    for cp in checkpoints:
                        perf_str = re.findall(
                            r"{}-(.*){}".format(os.path.basename(splitext[0]),
                                                splitext[1]), cp)
                        if len(perf_str) > 0:
                            p = float(perf_str[0])
                            if p > best_perf:
                                best_perf = p

                    if best_perf > 0:
                        logger.info(
                            "Previously best checkpoint has performance {}".
                            format(best_perf))
                    else:
                        logger.info("Did not find any previous results.")

                    if current_perf > best_perf:
                        best_perf = current_perf
                        logger.info("Found new best-performing checkpoint!")
                        cp_best = "{}-{}{}".format(splitext[0], str(best_perf),
                                                   splitext[1])

                        os.rename(checkpoint_path_tmp, cp_best)

                except OSError:
                    # Probably a concurrent rename by another worker; continue and try again.
                    logger.exception("Could not rename checkpoint!")

        logger.info("Waiting...")
        sleep(10)

        if not do_loop:
            # Run only once.
            return
Example #2
0
File: views.py Project: BMQA/FXTest
from common.send_email import send_emails
from flask.views import View, MethodView
from flask_login import current_user, login_required
from common.Dingtalk import send_ding
from common.mysqldatabasecur import *
from common.dubbo_feng import DubboInterface
from config import Config_daoru_xianzhi, redis_host, redis_port, redis_save_result_db, save_duration, \
    system_request_toke, test_fail_try_num
from common.excet_excel import create_interface_case
from common.hebinglist import listmax
from common.pyredis import ConRedisOper
import logging
from utils.log_util import init_logging
from config import DEBUG

init_logging(__name__, level=DEBUG)
case = Blueprint('case', __name__)


def save_result(key, value):
    m = ConRedisOper(host=redis_host, port=redis_port, db=redis_save_result_db)
    m.sethase(key, value, save_duration)


def get_result(key):
    m = ConRedisOper(host=redis_host, port=redis_port, db=redis_save_result_db)
    results = m.getset(key)
    return results


def get_projects_and_models():
Example #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--p0-agent",
        type=str,
        choices=['static', 'rule', 'random', 'alphasheep', 'user'],
        required=True)
    parser.add_argument(
        "--alphasheep-checkpoint",
        help="Checkpoint for AlphaSheep, if --p0-agent=alphasheep.",
        required=False)
    parser.add_argument(
        "--agent-config",
        help="YAML file, containing agent specifications for AlphaSheep.",
        required=False)
    args = parser.parse_args()
    agent_choice = args.p0_agent
    as_checkpoint_path = args.alphasheep_checkpoint
    as_config_path = args.agent_config
    if agent_choice == "alphasheep" and (not as_checkpoint_path
                                         or not as_config_path):
        raise ValueError(
            "Need to specify --alphasheep-checkpoint and --agent-config if --p0_agent=alphasheep."
        )

    # Init logging and adjust log levels for some classes.
    init_logging()
    logger = get_named_logger("{}.main".format(
        os.path.splitext(os.path.basename(__file__))[0]))
    get_class_logger(GameController).setLevel(
        logging.DEBUG)  # Log every single card.
    get_class_logger(Gui).setLevel(logging.DEBUG)  # Log mouse clicks.
    get_class_logger(RuleBasedAgent).setLevel(
        logging.DEBUG)  # Log decisions by the rule-based players.

    # Create the agent for Player 0.
    if agent_choice == "alphasheep":

        # Load config. We ignore the "training" and "experiment" sections, but we need "agent_config".
        logger.info(f'Loading config from "{as_config_path}"...')
        config = load_config(as_config_path)
        get_class_logger(DQNAgent).setLevel(logging.DEBUG)  # Log Q-values.
        alphasheep_agent = DQNAgent(0, config=config, training=False)
        alphasheep_agent.load_weights(as_checkpoint_path)
        p0 = Player("0-AlphaSheep", agent=alphasheep_agent)
    elif agent_choice == "user":
        p0 = Player("0-User", agent=GUIAgent(0))
    elif agent_choice == "rule":
        p0 = Player("0-Hans", agent=RuleBasedAgent(0))
    elif agent_choice == "static":
        p0 = Player("0-Static", agent=StaticPolicyAgent(0))
    else:
        p0 = Player("0-RandomGuy", agent=RandomCardAgent(0))

    # Players 1-3 are RuleBasedAgents.
    players = [
        p0,
        Player("1-Zenzi", agent=RuleBasedAgent(1)),
        Player("2-Franz", agent=RuleBasedAgent(2)),
        Player("3-Andal", agent=RuleBasedAgent(3))
    ]

    # Rig the game so Player 0 has the cards to play a Herz-Solo.
    # Also, force them to play it.
    game_mode = GameMode(GameContract.suit_solo,
                         trump_suit=Suit.herz,
                         declaring_player_id=0)
    controller = GameController(players,
                                dealing_behavior=DealWinnableHand(game_mode),
                                forced_game_mode=game_mode)

    # The GUI initializes PyGame and registers on events provided by the controller. Everything single-threaded.
    #
    # The controller runs the game as usual. Whenever the GUI receives an event, it can block execution, so the controller must wait
    # for the GUI to return control. Until then, it can draw stuff and wait for user input (mouse clicks, card choices, ...).
    logger.info("Starting GUI.")
    with Gui(controller.game_state) as gui:
        # Run an endless loop of single games.
        logger.info("Starting game loop...")
        try:
            while True:
                controller.run_game()
        except UserQuitGameException:  # Closing the window or pressing [Esc]
            logger.info("User quit game.")

    logger.info("Shutdown.")