def main(): parser = argparse.ArgumentParser(description='BR') parser.add_argument('im_size', type=int, help='image size') parser.add_argument('dataset', type=str, help='dataset') parser.add_argument('c', type=float, help='amount of dropout', default=0.) parser.add_argument('lr', type=float, help='learning rate') parser.add_argument('opt', type=str, choices=['sgd', 'adam']) parser.add_argument('n_hidden', type=int, help='number of neurons in hidden layer') parser.add_argument('-im', '--imagenet', action='store_true', help='use imagenet weights') parser.add_argument('-pt', '--pretrained', action='store_true', help='Use pretrained VGG features') parser.add_argument('-name', type=str, help='name of experiment', default='BR') args = parser.parse_args() args.name = '_'.join((args.name, args.dataset, str(args.pretrained))) timestamp = time.strftime("%Y-%m-%d_%H:%M") logger = loggerClass(args, timestamp) BR(args, logger, timestamp)
def main(): parser = argparse.ArgumentParser(description='OR') parser.add_argument('dataset', type=str, help='dataset') parser.add_argument('g', type=float, help='monotonicity constraint hyperparam', default=0.1) parser.add_argument('q', type=float, help='L2 shrinkage hyperparam', default=0.) parser.add_argument('-pt', '--pretrained', action='store_true', help='Use pretrained VGG features') parser.add_argument('-name', type=str, help='name of experiment', default='OR_FINAL') args = parser.parse_args() args.name = '_'.join((args.name, args.dataset)) timestamp = time.strftime("%Y-%m-%d_%H:%M") logger = loggerClass(args, timestamp) OR(args, logger)
def main(): parser = argparse.ArgumentParser( description='Threshold stacking') parser.add_argument('dataset', type=str, help='dataset') parser.add_argument('-pt', '--pretrained', action='store_true', help='Use marginals predicted on pretrained features') parser.add_argument('-name', type=str, help='name of experiment', default='THRESH_stack') parser.add_argument('-nl', '--nonlinear', action='store_true', help='use nonlinear model (RF)') args = parser.parse_args() args.name = ' '.join((args.name, args.dataset)) timestamp = time.strftime("%Y-%m-%d_%H:%M") logger = loggerClass(args, timestamp) thresh_stack(args, logger)
def main(): parser = argparse.ArgumentParser(description='YE2012') parser.add_argument('dataset', type=str, help='dataset') parser.add_argument('-pt', '--pretrained', action='store_true', help='Use pretrained VGG features') parser.add_argument('-name', type=str, help='name of experiment', default='YE2012') args = parser.parse_args() args.name = '_'.join((args.name, args.dataset)) timestamp = time.strftime("%Y-%m-%d_%H:%M") logger = loggerClass(args, timestamp) ye_et_al(args, logger)
def main(): parser = argparse.ArgumentParser(description='thresholding') parser.add_argument('dataset', type=str, help='dataset') parser.add_argument( '-pt', '--pretrained', action='store_true', help='Load marginals from experiments with pretrained features') parser.add_argument('-name', type=str, help='name of experiment', default='THRESH') args = parser.parse_args() args.name = '_'.join((args.name, args.dataset)) timestamp = time.strftime("%Y-%m-%d_%H:%M") logger = loggerClass(args, timestamp) thresholding(args, logger)