Example #1
0
def train(model, optimizer, epoch, dataloader):
    num_iters = len(dataloader)  # iters per epoch
    max_iter = parser.max_epoch * num_iters
    model.train()
    model.to(device)

    for i, samples in enumerate(dataloader):
        images, labels, _ = samples
        cur_iter = (epoch - 1) * num_iters + i + 1
        adjust_learning_rate(optimizer=optimizer, cur_iter=cur_iter, ini_lr=parser.learning_rate,
                             step_size=parser.step_size, max_iter=max_iter, mode='poly')
        images = images.to(device)
        labels = labels.long().to(device)

        output = model(images)
        loss = compute_loss(output, labels, name='ce', ignore_index=parser.ignore_label)
        optimizer.zero_grad()
        loss.backward()
        if parser.clip_gradient:
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=parser.max_norm)
        optimizer.step()
        print("epoch number: {}/{}, iteration: {}/{}, loss value: {}"
              .format(epoch, parser.max_epoch, i + 1, num_iters, loss.item()))

        if parser.tensorboard:
            saved_scalar = {
                'loss': loss.item()
            }
            add_summary(saved_scalar, cur_iter, parser.log_dir)
def train_vgg_cifar_0001(config_data, tab_level=0, verbose=250):
	print('train_vgg_cifar_0001()')
	from pipeline.data.load_data_cifar import load_cifar_0001
	from utils.loss import compute_loss

	trainloader = load_cifar_0001(config_data, batch_size=None, shuffle=True, verbose=verbose)
	state_tracker = setup_state_tracker(config_data, verbose=verbose, tab_level=tab_level)
	net = new_or_load_model(state_tracker, verbose=verbose, tab_level=tab_level)

	criterion, optimizer = setup_training_tools_0001(net, config_data, 
		verbose=verbose, tab_level=tab_level+1)	

	pm.printv('Start training...'%(), tab_level=tab_level)
	total_iter_in_this_run = 0
	l_epoch = 1 + state_tracker.get_latest_saved_epoch()
	for n_epoch in range(l_epoch, l_epoch + config_data['general']['epoch']):
		state_tracker.setup_for_this_epoch(n_epoch)
		for i, data in enumerate(trainloader,0):
			optimizer.zero_grad()

			x, y0 = data
			if DEBUG_train_loop_0001(DEBUG_train_vgg_cifar_LOOP_SIGNAL, net, x, y0, 
				tab_level=tab_level, verbose=verbose): return

			y = net(x.to(this_device))

			loss = compute_loss(criterion, y.squeeze(3).squeeze(2).cpu(), y0)
			loss.backward()
			optimizer.step()

			# FOR LOGGING
			total_iter_in_this_run += 1
			state_tracker.store_loss_by_epoch(loss.item(), n_epoch)

			stop_iter, stop_epoch = DEBUG_train_loop_0002(DEBUG_train_vgg_cifar_LOOP2_SIGNAL, 
				i, n_epoch - l_epoch , tab_level=tab_level+1, verbose=verbose)		
			if stop_iter: break
		state_tracker.update_epoch()
		if stop_epoch: break
	state_tracker.update_state(total_iter_in_this_run, config_data)
	save_model_by_n_th_run(net, state_tracker,tab_level=tab_level, verbose=verbose)
	state_tracker.display_end_state(tab_level=tab_level+1, verbose=verbose)
Example #3
0
def test_epoch(net, dataloader, logger, config):
    net.eval()
    total_mask_loss = 0.0
    dataprocess = tqdm(dataloader)
    confusion_matrix = np.zeros((config.NUM_CLASS, config.NUM_CLASS))
    logger.info("Testing  : ")
    with torch.no_grad():
        for batch_item in dataprocess:
            image, mask = batch_item['image'], batch_item['mask']
            if torch.cuda.is_available():
                image, mask = image.cuda(), mask.cuda()
            out = net(image)
            weights = torch.tensor(
                [0.75, 1.25, 1.25, 1.25, 1.25, 1.25, 1.25, 1.25]).cuda()
            mask_loss = compute_loss(out,
                                     mask,
                                     weights=weights,
                                     device_id=0,
                                     num_class=config.NUM_CLASS)
            total_mask_loss += mask_loss.detach().item()
            confusion_matrix += get_confusion_matrix(mask, out, mask.size(),
                                                     config.NUM_CLASS)
            dataprocess.set_description_str('Test')
            dataprocess.set_postfix_str('mask loss is {:.4f}'.format(
                mask_loss.item()))
        logger.info("\taverage loss is {:.4f}".format(total_mask_loss /
                                                      len(dataloader)))
        pos = confusion_matrix.sum(0)
        res = confusion_matrix.sum(1)
        tp = np.diag(confusion_matrix)
        IoU_array = (tp / np.maximum(1.0, pos + res - tp))
        for i in range(8):
            print('{} IoU is : {}'.format(i, IoU_array[i]))
            logger.info('\t{} Iou is : {}'.format(i, IoU_array[i]))
        miou = IoU_array[1:].mean()
        logger.info('Test miou is : {:.4f}'.format(miou))
        print('Test: miou is {}'.format(miou))
Example #4
0
def test(cfg,
         data,
         weights=None,
         batch_size=16,
         img_size=608,
         iou_thres=0.5,
         conf_thres=0.001,
         nms_thres=0.5,
         save_json=True,
         hyp=None,
         model=None,
         single_cls=False):
    """test the metrics of the trained model

    :param str cfg: model cfg file
    :param str data: data dict
    :param str weights: weights path
    :param int batch_size: batch size
    :param int img_size: image size
    :param float iou_thres: iou threshold
    :param float conf_thres: confidence threshold
    :param float nms_thres: nms threshold
    :param bool save_json: Whether to save the model
    :param str hyp: hyperparameter
    :param str model: yolov4 model
    :param bool single_cls: only one class
    :return: results
    """

    if model is None:
        device = select_device(opt.device)
        verbose = False
        # Initialize model
        model = Model(cfg, img_size).to(device)
        # Load weights
        if weights.endswith('.pt'):
            checkpoint = torch.load(weights, map_location=device)
            state_dict = intersect_dicts(checkpoint['model'],
                                         model.state_dict())
            model.load_state_dict(state_dict, strict=False)
        elif len(weights) > 0:
            load_darknet_weights(model, weights)
        print(f'Loaded weights from {weights}!')

        if torch.cuda.device_count() > 1:
            model = nn.DataParallel(model)
    else:
        device = next(model.parameters()).device
        verbose = False

    test_path = data['valid']
    num_classes, names = (1, ['item']) if single_cls else (int(
        data['num_classes']), data['names'])

    # Dataloader
    dataset = LoadImagesAndLabels(test_path, img_size, batch_size, hyp=hyp)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batch_size,
                                             num_workers=8,
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    seen = 0
    model.eval()
    coco91class = coco80_to_coco91_class()
    output_format = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets',
                                             'Pre', 'Rec', 'mAP', 'F1')
    precision, recall, f_1, mean_pre, mean_rec, mean_ap, mf1 = 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3)
    json_dict, stats, aver_pre, ap_class = [], [], [], []
    for batch_i, (imgs, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=output_format)):
        targets = targets.to(device)
        imgs = imgs.to(device) / 255.0
        _, _, height, width = imgs.shape  # batch size, channels, height, width

        # Plot images with bounding boxes
        if batch_i == 0 and not os.path.exists('test_batch0.jpg'):
            plot_images(imgs=imgs,
                        targets=targets,
                        paths=paths,
                        fname='test_batch0.jpg')

        with torch.no_grad():
            inference_output, train_output = model(imgs)

            if hasattr(model, 'hyp'):  # if model has loss hyperparameters
                loss += compute_loss(train_output, targets,
                                     model)[1][:3].cpu()  # GIoU, obj, cls

            output = non_max_suppression(inference_output,
                                         conf_thres=conf_thres,
                                         nms_thres=nms_thres)

        # Statistics per image
        for i, pred in enumerate(output):
            labels = targets[targets[:, 0] == i, 1:]
            num_labels = len(labels)
            target_class = labels[:, 0].tolist() if num_labels else []
            seen += 1

            if pred is None:
                if num_labels:
                    stats.append(
                        ([], torch.Tensor(), torch.Tensor(), target_class))
                continue

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(Path(paths[i]).stem.split('_')[-1])
                box = pred[:, :4].clone()  # xyxy
                scale_coords(imgs[i].shape[1:], box,
                             shapes[i][0])  # to original shape
                box = xyxy2xywh(box)  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for det_i, det in enumerate(pred):
                    json_dict.append({
                        'image_id':
                        image_id,
                        'category_id':
                        coco91class[int(det[6])],
                        'bbox':
                        [float(format(x, '.%gf' % 3)) for x in box[det_i]],
                        'score':
                        float(format(det[4], '.%gf' % 5))
                    })

            # Clip boxes to image bounds
            clip_coords(pred, (height, width))

            # Assign all predictions as incorrect
            correct = [0] * len(pred)
            if num_labels:
                detected = []
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5])
                tbox[:, [0, 2]] *= width
                tbox[:, [1, 3]] *= height

                # Search for correct predictions
                for j, (*pbox, _, _, pcls) in enumerate(pred):

                    # Break if all targets already located in image
                    if len(detected) == num_labels:
                        break

                    # Continue if predicted class not among image classes
                    if pcls.item() not in target_class:
                        continue

                    # Best iou, index between pred and targets
                    mask = (pcls == tcls_tensor).nonzero(
                        as_tuple=False).view(-1)
                    iou, best_iou = bbox_iou(pbox, tbox[mask]).max(0)

                    # If iou > threshold and class is correct mark as correct
                    if iou > iou_thres and mask[
                            best_iou] not in detected:  # and pcls == target_class[bi]:
                        correct[j] = 1
                        detected.append(mask[best_iou])

            # Append statistics (correct, conf, pcls, target_class)
            stats.append(
                (correct, pred[:, 4].cpu(), pred[:, 6].cpu(), target_class))

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in list(zip(*stats))]
    if len(stats):
        precision, recall, aver_pre, f_1, ap_class = ap_per_class(*stats)
        mean_pre, mean_rec, mean_ap, mf1 = precision.mean(), recall.mean(
        ), aver_pre.mean(), f_1.mean()
        num_targets = np.bincount(
            stats[3].astype(np.int64),
            minlength=num_classes)  # number of targets per class
    else:
        num_targets = torch.zeros(1)

    # Print results
    print_format = '%20s' + '%10.3g' * 6
    print(print_format %
          ('all', seen, num_targets.sum(), mean_pre, mean_rec, mean_ap, mf1))

    # Print results per class
    if verbose and num_classes > 1 and stats:
        for i, class_ in enumerate(ap_class):
            print(print_format %
                  (names[class_], seen, num_targets[class_], precision[i],
                   recall[i], aver_pre[i], f_1[i]))

    # Save JSON
    if save_json and mean_ap and json_dict:
        try:
            img_ids = [
                int(Path(x).stem.split('_')[-1]) for x in dataset.img_files
            ]
            with open('results.json', 'w') as file:
                json.dump(json_dict, file)

            # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            cocogt = COCO('data/coco/annotations/instances_val2017.json'
                          )  # initialize COCO ground truth api
            cocodt = cocogt.loadRes('results.json')  # initialize COCO pred api

            cocoeval = COCOeval(cocogt, cocodt, 'bbox')
            cocoeval.params.imgIds = img_ids  # [:32]  # only evaluate these images
            cocoeval.evaluate()
            cocoeval.accumulate()
            cocoeval.summarize()
            mean_ap = cocoeval.stats[1]  # update mAP to pycocotools mAP
        except ImportError:
            print(
                'WARNING: missing dependency pycocotools from requirements.txt. Can not compute official COCO mAP.'
            )

    # Return results
    maps = np.zeros(num_classes) + mean_ap
    for i, class_ in enumerate(ap_class):
        maps[class_] = aver_pre[i]
    return (mean_pre, mean_rec, mean_ap, mf1,
            *(loss / len(dataloader)).tolist()), maps
Example #5
0
def train(model, discriminator, optimizer, source_data_iter, target_data_iter,
          val_data, start_iter, last_mIoU):
    # record the validation result
    best_mIoU = last_mIoU
    best_iter = start_iter
    D1 = discriminator['D1']
    D2 = discriminator['D2']

    model.train()
    model.to(device)
    D1.train()
    D1.to(device)
    D2.train()
    D2.to(device)

    optimizer_G = optimizer['G']
    optimizer_D1 = optimizer['D1']
    optimizer_D2 = optimizer['D2']

    for i in range(start_iter, parser.max_iter + 1):
        loss_seg1_value = 0
        loss_seg2_value = 0
        loss_D1_value = 0
        loss_D2_value = 0
        loss_adv1_target_value = 0
        loss_adv2_target_value = 0

        optimizer_G.zero_grad()
        optimizer_D1.zero_grad()
        optimizer_D2.zero_grad()
        adjust_learning_rate(optimizer=optimizer_G,
                             cur_iter=i,
                             ini_lr=parser.learning_rate,
                             step_size=parser.step_size,
                             max_iter=parser.max_iter,
                             mode='poly')
        adjust_learning_rate(optimizer=optimizer_D1,
                             cur_iter=i,
                             ini_lr=LEARNING_RATE_D,
                             step_size=parser.step_size,
                             max_iter=parser.max_iter,
                             mode='poly')
        adjust_learning_rate(optimizer=optimizer_D2,
                             cur_iter=i,
                             ini_lr=LEARNING_RATE_D,
                             step_size=parser.step_size,
                             max_iter=parser.max_iter,
                             mode='poly')

        # train G
        # froze gradient in discriminator
        for params in D1.parameters():
            params.requires_grad = False
        for params in D2.parameters():
            params.requires_grad = False

        _, batch = source_data_iter.__next__()
        images, labels = batch
        images = images.to(device)
        labels = labels.long().to(device)

        # train with source data
        output1_source, output2_source = model(images)
        loss_seg1 = compute_loss(output1_source,
                                 labels,
                                 name='ce',
                                 ignore_index=parser.ignore_label)
        loss_seg2 = compute_loss(output2_source,
                                 labels,
                                 name='ce',
                                 ignore_index=parser.ignore_label)
        loss_seg = loss_seg2 + LAMBDA_SEG * loss_seg1
        loss_seg.backward()
        loss_seg1_value += loss_seg1.item()
        loss_seg2_value += loss_seg2.item()

        # train with target data
        _, batch = target_data_iter.__next__()
        images, _, _ = batch
        images = images.to(device)
        output1_target, output2_target = model(images)
        output_map1 = D1(F.softmax(output1_target))
        output_map2 = D2(F.softmax(output2_target))
        label_map1 = torch.FloatTensor(
            output_map1.data.size()).fill_(SOURCE_LABEL).to(device)
        label_map2 = torch.FloatTensor(
            output_map2.data.size()).fill_(SOURCE_LABEL).to(device)
        loss_adv1_target = compute_loss(output_map1, label_map1, name='mse')
        loss_adv1_target_value += loss_adv1_target.item()
        loss_adv2_target = compute_loss(output_map2, label_map2, name='mse')
        loss_adv2_target_value += loss_adv2_target.item()

        loss_adv_target = LAMBDA_ADV_TARGET_1 * loss_adv1_target + LAMBDA_ADV_TARGET_2 * loss_adv2_target
        loss_adv_target.backward()

        # train D
        # bring back gradient
        for params in D1.parameters():
            params.requires_grad = True
        for params in D2.parameters():
            params.requires_grad = True

        # train with source
        output1_source = output1_source.detach()
        output2_source = output2_source.detach()
        output_map1 = D1(F.softmax(output1_source))
        output_map2 = D2(F.softmax(output2_source))
        label_map1 = torch.FloatTensor(
            output_map1.data.size()).fill_(SOURCE_LABEL).to(device)
        label_map2 = torch.FloatTensor(
            output_map2.data.size()).fill_(SOURCE_LABEL).to(device)
        loss_D1 = compute_loss(output_map1, label_map1, name='mse')
        loss_D1 = loss_D1 / 2
        loss_D1.backward()
        loss_D1_value += loss_D1.item()
        loss_D2 = compute_loss(output_map2, label_map2, name='mse')
        loss_D2 = loss_D2 / 2
        loss_D2.backward()
        loss_D2_value += loss_D2.item()

        # train with target
        output1_target = output1_target.detach()
        output2_target = output2_target.detach()
        output_map1 = D1(F.softmax(output1_target))
        output_map2 = D2(F.softmax(output2_target))
        label_map1 = torch.FloatTensor(
            output_map1.data.size()).fill_(TARGET_LABEL).to(device)
        label_map2 = torch.FloatTensor(
            output_map2.data.size()).fill_(TARGET_LABEL).to(device)
        loss_D1 = compute_loss(output_map1, label_map1, name='mse')
        loss_D1 = loss_D1 / 2
        loss_D1.backward()
        loss_D1_value += loss_D1.item()
        loss_D2 = compute_loss(output_map2, label_map2, name='mse')
        loss_D2 = loss_D2 / 2
        loss_D2.backward()
        loss_D2_value += loss_D2.item()

        # clip gradient
        if parser.clip_gradient:
            torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           max_norm=parser.max_norm)
            torch.nn.utils.clip_grad_norm_(D1.parameters(),
                                           max_norm=parser.max_norm)
            torch.nn.utils.clip_grad_norm_(D2.parameters(),
                                           max_norm=parser.max_norm)

        optimizer_G.step()
        optimizer_D1.step()
        optimizer_D2.step()

        print(
            "iteration: {}/{}, loss_seg1_value: {}, loss_seg2_value: {}, loss_D1_value: {},loss_D2_value: {}, "
            "loss_adv1_target_value: {},loss_adv2_target_value: {}".format(
                i + 1, parser.max_iter, loss_seg1_value, loss_seg2_value,
                loss_D1_value, loss_D2_value, loss_adv1_target_value,
                loss_adv2_target_value))

        if parser.tensorboard:
            saved_scalar = {
                'loss_seg1': loss_seg1_value,
                'loss_seg2': loss_seg2_value,
                'loss_D1': loss_D1_value,
                'loss_D2': loss_D2_value,
                'loss_adv1_target': loss_adv1_target_value,
                'loss_adv2_target': loss_adv2_target_value
            }
            add_summary(saved_scalar, i, parser.log_dir)

        if i % parser.save_iter == 0:
            cur_mIoU = validation(model, val_data)
            if cur_mIoU > best_mIoU:
                optimizer = {
                    'G': optimizer_G.state_dict(),
                    'D1': optimizer_D1.state_dict(),
                    'D2': optimizer_D2.state_dict()
                }
                best_iter = i
                best_mIoU = cur_mIoU
                state_dict = {
                    'iter': best_iter,
                    'model': model.state_dict(),
                    'optimizer': optimizer,
                    'best_mIoU': best_mIoU
                }
                prefix = "Cross_Domain_Segmentation_" + mode
                sava_checkpoint(state_dict, parser.ckpt_dir, prefix=prefix)

    return best_mIoU, best_iter
Example #6
0
    prev_mAP = 0.0
    current_mAP = 0.0
    for epoch in range(args.epochs):
        
        print("\n---- Training Model ----")

        model.train()  # Set model to training mode
        
        for batch_i, (_, imgs, targets) in enumerate(tqdm.tqdm(dataloader, desc=f"Training Epoch {epoch}")):
            batches_done = len(dataloader) * epoch + batch_i

            imgs = imgs.to(device, non_blocking=True)
            targets = targets.to(device)

            yolo_B_old_class,yolo_A_old_class,yolo_B_new_class = model(imgs)
            loss, loss_components = compute_loss(yolo_B_new_class, targets, model)
            
            loss_distill = distillation_loss(yolo_A_old_class,yolo_B_old_class)
            loss += loss_distill

            loss.backward()

            ###############
            # Run optimizer
            ###############

            if batches_done % model.hyperparams['subdivisions'] == 0:
                # Adapt learning rate
                # Get learning rate defined in cfg
                lr = model.hyperparams['learning_rate']
                if batches_done < model.hyperparams['burn_in']:
Example #7
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    print(f'Hyperparameters {hyp}')
    """
    训练日志包括:权重、tensorboard文件、超参数hyp、设置的训练参数opt(也就是epochs,batch_size等),result.txt
    result.txt包括: 占GPU内存、训练集的GIOU loss, objectness loss, classification loss, 总loss, 
    targets的数量, 输入图片分辨率, 准确率TP/(TP+FP),召回率TP/P ; 
    测试集的mAP50, [email protected]:0.95, GIOU loss, objectness loss, classification loss.
    还会保存batch<3的ground truth
    """
    # 获取保存路径、总轮次、批次、总批次(涉及到分布式训练)、权重、进程序号(主要用于分布式训练)
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    # 保存hyp和opt
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    # torch_distributed_zero_first同步所有进程
    # check_dataset检查数据集,如果没找到数据集则下载数据集(仅适用于项目中自带的yaml文件数据集)
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        # 加载模型,从google云盘中自动下载模型
        # 但通常会下载失败,建议提前下载下来放进weights目录
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        # 加载检查点
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        """
        这里模型创建,可通过opt.cfg,也可通过ckpt['model'].yaml
        这里的区别在于是否是resume,resume时会将opt.cfg设为空,则按照ckpt['model'].yaml创建模型
        这也影响着下面是否除去anchor的key(也就是不加载anchor),如果resume则不加载anchor
        主要是因为保存的模型会保存anchors,有时候用户自定义了anchor之后,再resume,则原来基于coco数据集的anchor就会覆盖自己设定的anchor,
        参考https://github.com/ultralytics/yolov5/issues/459
        所以下面设置了intersect_dicts,该函数就是忽略掉exclude
        """
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        # 显示加载预训练权重的的键值对和创建模型的键值对
        # 如果设置了resume,则会少加载两个键值对(anchors,anchor_grid)
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    """
    冻结模型层,设置冻结层名字即可
    具体可以查看https://github.com/ultralytics/yolov5/issues/679
    但作者不鼓励冻结层,因为他的实验当中显示冻结层不能获得更好的性能,参照:https://github.com/ultralytics/yolov5/pull/707
    并且作者为了使得优化参数分组可以正常进行,在下面将所有参数的requires_grad设为了True
    其实这里只是给一个freeze的示例
    """
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    """
    nbs为模拟的batch_size; 
    就比如默认的话上面设置的opt.batch_size为16,这个nbs就为64,
    也就是模型梯度累积了64/16=4(accumulate)次之后
    再更新一次模型,变相的扩大了batch_size
    """
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    # 根据accumulate设置权重衰减系数
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    # 将模型分成三组(weight、bn, bias, 其他所有参数)优化
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    # 选用优化器,并设置pg0组的优化方式
    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)
    # 设置weight、bn的优化方式
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    # 设置biases的优化方式
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    # 打印优化信息
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # 设置cosine调度器,定义学习率衰减学习率衰减,这里为余弦退火方式进行衰减
    # 就是根据以下公式lf,epoch和超参数hyp['lrf']进行衰减
    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    #    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf']  # cosine
    lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']

    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if rank in [-1, 0] and wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv5'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # EMA
    # 在深度学习中,经常会使用EMA(指数移动平均)这个方法对模型的参数做滑动平均,以求提高测试指标并增加模型鲁棒,如果GPU进程数大于1,则不创建
    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    # best_fitness是以[0.0, 0.0, 0.1, 0.9]为系数并乘以[精确度, 召回率, [email protected], [email protected]:0.95]再求和所得
    # 根据best_fitness来保存best.pt
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        # 加载优化器与best_fitness
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        # 加载训练结果result.txt
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs  加载训练的轮次
        start_epoch = ckpt['epoch'] + 1
        """
        如果resume,则备份权重
        尽管目前resume能够近似100%成功的起作用了,参照:https://github.com/ultralytics/yolov5/pull/756
        但为了防止resume时出现其他问题,把之前的权重覆盖了,所以这里进行备份,参照:https://github.com/ultralytics/yolov5/pull/765
        """
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        """
        如果新设置epochs小于加载的epoch,
        则视新设置的epochs为需要再训练的轮次数而不再是总的轮次数
        """
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # 获取模型最大步长和模型输入图片分辨率
    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])

    # 检查训练和测试图片分辨率确保能够整除总步长gs
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    # 分布式训练,参照:https://github.com/ultralytics/yolov5/issues/475
    # DataParallel模式,仅支持单机多卡
    # rank为进程编号, 这里应该设置为rank=-1则使用DataParallel模式
    # rank=-1且gpu数量=1时,不会进行分布式
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    # 使用跨卡同步BN
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # DDP mode
    # 如果rank不等于-1,则使用DistributedDataParallel模式
    # local_rank为gpu编号,rank为进程,例如rank=3,local_rank=0 表示第 3 个进程内的第 1 块 GPU。
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad,
                                            prefix=colorstr('train: '))
    """
    获取标签中最大的类别值,并于类别数作比较
    如果小于类别数则表示有问题
    """
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        # 更新ema模型的updates参数,保持ema的平滑性
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '))[0]

        if not opt.resume:
            # 将所有样本的标签拼接到一起shape为(total, 1),统计后做可视化
            labels = np.concatenate(dataset.labels, 0)
            # 获得所有样本的类别
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                # 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化
                plot_labels(labels, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Check anchors
            """
            计算默认锚点anchor与数据集标签框的长宽比值
            标签的长h宽w与anchor的长h_a宽w_a的比值, 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的
            如果标签框满足上面条件的数量小于总数的99%,则根据k-mean算法聚类新的锚点anchor
            """
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters # 根据自己数据集的类别数设置分类损失的系数
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    # 根据labels初始化图片采样权重
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names
    """
    设置giou的值在objectness loss中做标签的系数, 使用代码如下
    tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)
    这里model.gr=1,也就是说完全使用标签框与预测框的giou值来作为该预测框的objectness标签
    """

    # Start training
    t0 = time.time()
    # 获取热身训练的迭代次数
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    """
    设置学习率衰减所进行到的轮次,
    目的是打断训练后,--resume接着训练也能正常的衔接之前的训练进行学习率衰减
    """
    scheduler.last_epoch = start_epoch - 1  # do not move
    # 通过torch1.6自带的api设置混合精度训练
    scaler = amp.GradScaler(enabled=cuda)
    """
        打印训练和测试输入图片分辨率
        加载图片时调用的cpu进程数
        从哪个epoch开始训练
    """
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    # 加载图片权重(可选),定义进度条,设置偏差Burn-in,使用多尺度,前向传播,损失函数,反向传播,优化器,打印进度条,保存训练参数至tensorboard,计算mAP,保存结果到results.txt,保存模型(最好和最后)

    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            """
                如果设置进行图片采样策略,
                则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数
                通过random.choices生成图片索引indices从而进行采样
            """
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                # 类平衡采样
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP

# 如果是DDP模式,则广播采样策略
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        # 初始化训练时打印的平均损失信息
        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            # DDP模式下打乱数据, ddp.sampler的随机采样数据是基于epoch+seed作为随机种子,
            # 每次epoch不同,随机种子就不同
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar,
                        total=nb)  # progress bar    tqdm 创建进度条,方便训练时 信息的展示
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            """
                热身训练(前nw次迭代)
                在前nw次迭代中,根据以下方式选取accumulate和学习率
            """
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    """
                        bias的学习率从0.1下降到基准学习率lr*lf(epoch),其他的参数学习率从0增加到lr*lf(epoch)
                        lf为上面设置的余弦退火的衰减函数
                    """
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            # 设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # 混合精度
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                # 计算损失,包括分类损失,objectness损失,框的回归损失
                # loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失
                if (IS_Debug()):
                    #loss, loss_items = compute_loss(pred, targets.to(device), model, imgs)  # loss scaled by batch_size
                    loss, loss_items = compute_loss(
                        pred, targets.to(device),
                        model)  # loss scaled by batch_size
                else:
                    loss, loss_items = compute_loss(
                        pred, targets.to(device),
                        model)  # loss scaled by batch_size
                if rank != -1:
                    # 平均不同gpu之间的梯度
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            # 模型反向传播accumulate次之后再根据累积的梯度更新一次参数
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema is not None:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                # 打印显存,进行的轮次,损失,target的数量和图片的size等信息
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                # 将前三次迭代batch的标签框在图片上画出来并保存
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({
                        "Mosaics": [
                            wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg')
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        # 进行学习率衰减
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP

            # 更新EMA的属性
            # 添加include的属性
            if ema:
                ema.update_attr(model,
                                include=[
                                    'yaml', 'nc', 'hyp', 'gr', 'names',
                                    'stride', 'class_weights'
                                ])

            # 判断该epoch是否为最后一轮
            final_epoch = epoch + 1 == epochs
            # 对测试集进行测试,计算mAP等指标
            # 测试时使用的是EMA模型
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            """
            保存模型,还保存了epoch,results,optimizer等信息,
            optimizer将不会在最后一轮完成后保存
            model保存的是EMA的模型
            """
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        """
            模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;
            并且对模型进行model.half(), 将Float32的模型->Float16,
            可以减少模型大小,提高inference速度
        """
        final = best if best.exists() else last  # final model
        for f in [last, best]:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload

        # Plots
        if plots:
            # 可视化results.txt文件
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    'results.png', 'precision_recall_curve.png',
                    'confusion_matrix.png'
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
                if opt.log_artifacts:
                    wandb.log_artifact(artifact_or_path=str(final),
                                       type='model',
                                       name=save_dir.stem)

        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for conf, iou, save_json in ([0.25, 0.45,
                                          False], [0.001, 0.65,
                                                   True]):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=total_batch_size,
                                          imgsz=imgsz_test,
                                          conf_thres=conf,
                                          iou_thres=iou,
                                          model=attempt_load(final,
                                                             device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=save_json,
                                          plots=False)

    else:
        dist.destroy_process_group()  # 释放显存

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
Example #8
0
def main():
    """ Train and test

    :param opt: args
    :param writer: tensorboard
    :return:
    """

    global opt
    opt = parse()

    arc = opt.arc
    cfg = opt.cfg
    teacher_cfg = opt.teacher_cfg
    img_size = opt.img_size
    epochs = opt.epochs
    batch_size = opt.batch_size
    accumulate = opt.accumulate  # effective bs = batch_size * accumulate = 16 * 4 = 64
    weights = opt.weights
    teacher_weights = opt.teacher_weights
    multi_scale = opt.multi_scale
    sparsity_training = opt.st

    opt.weights = last if opt.resume else opt.weights

    # Initial logging
    logging.basicConfig(
        format="%(message)s",
        level=logging.INFO if opt.local_rank in [-1, 0] else logging.WARN)

    # Train
    logger.info(opt)
    if opt.local_rank in [-1, 0]:
        logger.info('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
        writer = SummaryWriter()

    # Hyperparameters
    with open(opt.hyp) as f_hyp:
        hyp = yaml.safe_load(f_hyp)
    # data dict
    with open(opt.data) as f_data:
        data = yaml.safe_load(f_data)

    # Distributed training initialize
    device = select_device(opt.device)
    if opt.local_rank != -1:
        dist.init_process_group(init_method="env://", backend='nccl')
        torch.cuda.set_device(opt.local_rank)
        device = torch.device(f"cuda:{opt.local_rank}")
        # world_size = torch.distributed.get_world_size()

    init_seeds()
    cuda = device.type != 'cpu'
    torch.backends.cudnn.benchmark = True

    if multi_scale:
        img_size_min = round(img_size / 32 / 1.5) + 1
        img_size_max = round(img_size / 32 * 1.5) - 1
        img_size = img_size_max * 32  # initiate with maximum multi_scale size
        logger.info(f'Using multi-scale  {img_size_min * 32} - {img_size}')

    train_path = data['train']
    num_classes = int(data['num_classes'])  # number of classes

    # Load dataset
    dataset = LoadImagesAndLabels(train_path,
                                  img_size,
                                  batch_size,
                                  augment=True,
                                  hyp=hyp,
                                  rect=opt.rect)
    train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if opt.local_rank != -1 else None
    num_worker = os.cpu_count() // torch.cuda.device_count()
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batch_size,
                                             num_workers=min([num_worker, batch_size, 8]),
                                             shuffle=not (opt.rect or train_sampler),
                                             sampler=train_sampler,
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    # Load model
    model = Model(cfg, img_size, arc=arc).to(device)

    # Load teacher model
    if teacher_cfg:
        teacher_model = Model(teacher_cfg, img_size, arc).to(device)

    # optimizer parameter groups
    param_group0, param_group1 = [], []
    for key, value in model.named_parameters():
        if 'Conv2d.weight' in key:
            param_group1.append(value)
        else:
            param_group0.append(value)
    if opt.adam:
        optimizer = optim.Adam(param_group0, lr=hyp['lr0'])
    else:
        optimizer = optim.SGD(param_group0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    # add param_group1 with weight_decay
    optimizer.add_param_group({'params': param_group1, 'weight_decay': hyp['weight_decay']})
    logger.info(f'Optimizer groups: {len(param_group1)} conv.weight, {len(param_group0)} other')
    del param_group0, param_group1

    start_epoch = 0
    best_fitness = 0.
    if weights.endswith('.pt'):
        checkpoint = torch.load(weights, map_location=device)
        state_dict = intersect_dicts(checkpoint['model'], model.state_dict())
        model.load_state_dict(state_dict, strict=False)
        print('loaded weights from', weights, '\n')

        # load optimizer
        if checkpoint['optimizer'] is not None:
            optimizer.load_state_dict(checkpoint['optimizer'])
            best_fitness = checkpoint['best_fitness']
        # load results
        if checkpoint.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(checkpoint['training_results'])
        # resume
        if opt.resume:
            start_epoch = checkpoint['epoch'] + 1
        del checkpoint

    elif len(weights) > 0:
        # weights are 'yolov4.weights', 'darknet53.conv.74' etc.
        load_darknet_weights(model, weights)
        logger.info(f'loaded weights from {weights}\n')

    # Load teacher weights
    if teacher_cfg:
        if teacher_weights.endswith('.pt'):
            teacher_model.load_state_dict(torch.load(teacher_weights, map_location=device)['model'])
        elif teacher_weights.endswith('.weights'):
            load_darknet_weights(teacher_model, teacher_weights)
        else:
            raise Exception('pls provide proper teacher weights for knowledge distillation')
        if not mixed_precision:
            teacher_model.eval()
        logger.info('<......................using knowledge distillation....................>')
        logger.info(f'teacher model: {teacher_weights}\n')

    # Sparsity training
    if opt.prune == 0:
        _, _, prune_index = parse_module_index(model.module_dicts)
        if sparsity_training:
            logger.info('normal sparse training')

    if mixed_precision:
        if teacher_cfg:
            [model, teacher_model], optimizer = amp.initialize([model, teacher_model], optimizer,
                                                               opt_level='O1', verbosity=1)
        else:
            model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=1)

    # SyncBatchNorm and distributed training
    if cuda and opt.local_rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        model = model.to(device)
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[opt.local_rank])
        model.module_list = model.module.module_list
        model.yolo_layers = model.module.yolo_layers

    for index in prune_index:
        bn_weights = gather_bn_weights(model.module_list, [index])
        if opt.local_rank == 0:
            writer.add_histogram('before_train_per_layer_bn_weights/hist', bn_weights.numpy(), index, bins='doane')

    # Start training
    model.num_classes = num_classes
    model.arc = opt.arc
    model.hyp = hyp
    num_batch_size = len(dataloader)
    # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    results = (0, 0, 0, 0, 0, 0, 0)
    start_train_time = time.time()
    logger.info('Image sizes %d \n Starting training for %d epochs...', img_size, epochs)

    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        mean_losses = torch.zeros(4).to(device)
        mean_soft_target = torch.zeros(1).to(device)
        pbar = enumerate(dataloader)
        logger.info(('\n %10s %10s %10s %10s %10s %10s %10s %10s'), 'Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total',
                    'targets', 'img_size')
        if opt.local_rank in [-1, 0]:
            pbar = tqdm(pbar, total=num_batch_size)
        optimizer.zero_grad()

        for i, (imgs, targets, _, _) in pbar:  # batch -------------------------------------------------------------
            num_integrated_batches = i + num_batch_size * epoch

            # Adjust the learning rate
            learning_rate = adjust_learning_rate(optimizer, num_integrated_batches, num_batch_size, hyp, epoch, epochs)
            if i == 0 and opt.local_rank in [-1, 0]:
                logger.info(f'learning rate: {learning_rate}')
            imgs = imgs.to(device) / 255.0
            targets = targets.to(device)

            # Multi-Scale training
            if multi_scale:
                if num_integrated_batches / accumulate % 10 == 0:
                    img_size = random.randrange(img_size_min, img_size_max + 1) * 32
                scale_factor = img_size / max(imgs.shape[2:])
                if scale_factor != 1:
                    new_shape = [math.ceil(x * scale_factor / 32.) * 32 for x in imgs.shape[2:]]
                    imgs = F.interpolate(imgs, size=new_shape, mode='bilinear', align_corners=False)

            pred = model(imgs)

            # Compute loss
            loss, loss_items = compute_loss(pred, targets, model)

            # knowledge distillation
            soft_target = 0
            if teacher_cfg:
                if mixed_precision:
                    with torch.no_grad():
                        output_teacher = teacher_model(imgs)
                else:
                    _, output_teacher = teacher_model(imgs)
                soft_target = distillation_loss(pred, output_teacher, model.num_classes, imgs.size(0))
                loss += soft_target

            # Scale loss by nominal batch_size of 64
            loss *= batch_size / 64

            # Compute gradient
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            # Sparse the BN layer that needs pruning
            if sparsity_training:
                # bn_l1_regularization(model.module_list, opt.penalty_factor, cba_index, epoch, epochs)
                bn_l1_regularization(model.module_list, opt.penalty_factor, prune_index, epoch, epochs)

            # Accumulate gradient for x batches before optimizing
            if num_integrated_batches % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()

            if opt.local_rank in [-1, 0]:
                mean_losses = (mean_losses * i + loss_items) / (i + 1)
                mean_soft_target = (mean_soft_target * i + soft_target) / (i + 1)
                memory = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0  # (GB)
                description = ('%10s' * 2 + '%10.3g' * 6) % (
                    '%g/%g' % (epoch, epochs - 1), '%.3gG' % memory, *mean_losses, mean_soft_target, img_size)
                pbar.set_description(description)

            # end batch ------------------------------------------------------------------------------------------------

        # Update scheduler
        # scheduler.step()

        if opt.local_rank in [-1, 0]:
            final_epoch = epoch + 1 == epochs
            # Calculate mAP
            if not (opt.notest or opt.nosave) or final_epoch:
                with torch.no_grad():
                    results, _ = test(cfg, data,
                                      batch_size=batch_size,
                                      img_size=opt.img_size,
                                      model=model,
                                      conf_thres=0.001 if final_epoch and epoch > 0 else 0.1,  # 0.1 for speed
                                      save_json=final_epoch and epoch > 0)

            # Write epoch results
            with open(results_file, 'a') as file:
                # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
                file.write(description + '%10.3g' * 7 % results + '\n')

            # Write Tensorboard results
            if writer:
                outputs = list(mean_losses) + list(results)
                titles = ['GIoU', 'Objectness', 'Classification', 'Train loss',
                          'Precision', 'Recall', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification']
                for output, title in zip(outputs, titles):
                    writer.add_scalar(title, output, epoch)
                bn_weights = gather_bn_weights(model.module_list, prune_index)
                writer.add_histogram('bn_weights/hist', bn_weights.numpy(), epoch, bins='doane')

            # Update best mAP
            fitness = results[2]
            if fitness > best_fitness:
                best_fitness = fitness

            # Save training results
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save and opt.local_rank == 0:
                with open(results_file, 'r') as file:
                    # Create checkpoint
                    checkpoint = {'epoch': epoch,
                                  'best_fitness': best_fitness,
                                  'training_results': file.read(),
                                  'model': model.module.state_dict() if isinstance(
                                   model, nn.parallel.DistributedDataParallel) else model.state_dict(),
                                  'optimizer': None if final_epoch else optimizer.state_dict()}

                # Save last checkpoint
                torch.save(checkpoint, last)

                # Save best checkpoint
                if best_fitness == fitness:
                    torch.save(checkpoint, best)

                # Delete checkpoint
                del checkpoint

            # end epoch -----------------------------------------------------------------------------------------------
    # end training

    if opt.local_rank in [-1, 0]:
        if len(opt.name):
            os.rename('results.txt', 'results_%s.txt' % opt.name)
        plot_results()  # save as results.png
        print(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - start_train_time) / 3600:.3f} hours.\n')
    if torch.cuda.device_count() > 1:
        dist.destroy_process_group()
    torch.cuda.empty_cache()
    return results
Example #9
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv5'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            plot_labels(labels, save_dir=save_dir)
            if tb_writer:
                # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
                tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(save_dir / f'train_batch{ni}.jpg')  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    # if tb_writer and result is not None:
                    # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=epoch == 0 or final_epoch,  # plot first and last
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ''
        fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file],
                          [flast, fbest, fresults]):
            if f1.exists():
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        'gsutil cp %s gs://%s/weights' %
                        (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=save_dir)  # save as results.png
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Example #10
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings,超参数,训练para
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(
            rank):  # torch_distributed_zero_first同步所有进程
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    # 所以这里主要是设定一个,如果加载预训练权重进行训练的话,就去除掉权重中的anchor,采用用户自定义的;
    # 如果是resume的话,就是不去除anchor,就权重和anchor一起加载, 接着训练;
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create resume时将opt.cfg设为空
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys 如果resume,则加载权重中保存的anchor来继续训练;
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' %
                    (len(state_dict), len(model.state_dict()), weights))
        # 显示加载预训练权重的的键值对和创建模型的键值对
        # 如果设置了resume,则会少加载两个键值对(anchors,anchor_grid)
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    #将模型分成三组(weight、bn, bias, 其他所有参数)优化
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv5'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode DataParallel模式,仅支持单机多卡
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average 为模型创建EMA指数滑动平均,如果GPU进程数大于1,则不创建
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    # 如果rank不等于-1,则使用DistributedDataParallel模式
    # local_rank为gpu编号,rank为进程,例如rank=3,local_rank=0 表示第 3 个进程内的第 1 块 GPU。
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)
    """
    获取标签中最大的类别值,并于类别数作比较
    如果小于类别数则表示有问题
    """
    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers,
                                       pad=0.5)[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            # 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化
            if plots:
                Thread(target=plot_labels,
                       args=(labels, save_dir, loggers),
                       daemon=True).start()
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)  # 通过torch1.6自带的api设置混合精度训练
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)  # 广播索引到其他group
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
            # DDP模式下打乱数据, ddp.sampler的随机采样数据是基于epoch+seed作为随机种子,
            # 每次epoch不同,随机种子就不同
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    """
                    bias的学习率从0.1下降到基准学习率lr*lf(epoch),
                    其他的参数学习率从0增加到lr*lf(epoch).
                    lf为上面设置的余弦退火的衰减函数
                    """
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # 模型反向传播accumulate次之后再根据累积的梯度更新一次参数
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({
                        "Mosaics": [
                            wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg')
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    # 模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;
    # 并且对模型进行model.half(), 将Float32的模型->Float16,
    if rank in [-1, 0]:
        # Strip optimizers
        for f in [last, best]:
            if f.exists():  # is *.pt
                strip_optimizer(f)  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' %
                          (f, opt.bucket)) if opt.bucket else None  # upload

        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    'results.png', 'precision_recall_curve.png',
                    'confusion_matrix.png'
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

        # Test best.pt
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            results, _, _ = test.test(
                opt.data,
                batch_size=total_batch_size,
                imgsz=imgsz_test,
                model=attempt_load(best if best.exists() else last,
                                   device).half(),
                single_cls=opt.single_cls,
                dataloader=testloader,
                save_dir=save_dir,
                save_json=True,  # use pycocotools
                plots=False)

    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
def train(hyp):
    cfg = opt.cfg
    # data = opt.data
    epochs = opt.epochs  # 500200 batches at bs 64, 117263 images = 273 epochs
    batch_size = opt.batch_size
    accumulate = max(round(64 / batch_size),
                     1)  # accumulate n times before optimizer update (bs 64)
    weights = opt.weights  # initial training weights
    # Image Sizes
    gs = 32  # (pixels) grid size max stride
    # Configure run
    init_seeds()
    nc = 1 if opt.single_cls else int(len(open(
        opt.names_classes).readlines()))  # number of classes
    hyp['cls'] *= nc / 80  # update coco-tuned hyp['cls'] to current dataset

    # Remove previous results
    for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
        os.remove(f)

    # Initialize model
    # model = Darknet(opt.cfg, opt.input_size, opt.algorithm_type).to(device)
    from utils.model_prune import Darknet_sss
    model = Darknet_sss(opt.cfg, opt.input_size, opt.algorithm_type).to(device)
    CBL_idx, _, prune_idx, ignore_idx = parse_module_defs(model.module_defs)
    # Optimizer
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in dict(model.named_parameters()).items():
        if '.bias' in k:
            pg2 += [v]  # biases
        elif 'Conv2d.weight' in k:
            pg1 += [v]  # apply weight_decay
        else:
            pg0 += [v]  # all else

    if opt.adam:
        # hyp['lr0'] *= 0.1  # reduce lr (i.e. SGD=5E-3, Adam=5E-4)
        optimizer = optim.Adam(pg0, lr=hyp['lr0'])
        # optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)
    if opt.sss:
        optimizer2 = APGNAG([{
            'params': model.lambda_block
        }],
                            lr=hyp['lr0'],
                            momentum=opt.momentum,
                            gamma=opt.gamma_data)
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g Conv2d.weight, %g other' %
          (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    start_epoch = 0
    best_fitness = 0.0
    # attempt_download(weights)
    if weights.endswith('.pt'):  # pytorch format
        # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
        ckpt = torch.load(weights, map_location=device)

        # load model
        try:
            # ckpt['model'] = {k: v for k, v in ckpt['model'].state_dict().items() if model.state_dict()[k].numel() == v.numel()}
            # model.load_state_dict(ckpt['model'], strict=False)
            model.load_state_dict(
                torch.load(opt.weights, map_location=device)['model'])
        except KeyError as e:
            s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
                "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
            raise KeyError(s) from e

        # load optimizer
        # if ckpt['optimizer'] is not None:
        #     optimizer.load_state_dict(ckpt['optimizer'])
        #     best_fitness = ckpt['best_fitness']
        best_fitness = 1e-5

        # load results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # epochs
        start_epoch = ckpt['epoch'] + 1
        if epochs < start_epoch:
            print(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (opt.weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt

    elif len(weights) > 0:  # darknet format
        # possible weights are '*.weights', 'yolov3-tiny.conv.15',  'darknet53.conv.74' etc.
        load_darknet_weights(model, weights)

    if opt.freeze_layers:
        output_layer_indices = [
            idx - 1 for idx, module in enumerate(model.module_list)
            if isinstance(module, YOLOLayer)
        ]
        freeze_layer_indices = [
            x for x in range(len(model.module_list))
            if (x not in output_layer_indices) and (
                x - 1 not in output_layer_indices)
        ]
        for idx in freeze_layer_indices:
            for parameter in model.module_list[idx].parameters():
                parameter.requires_grad_(False)

    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level='O1',
                                          verbosity=0)

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.95 + 0.05  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    scheduler.last_epoch = start_epoch - 1  # see link below
    if opt.sss:
        scheduler2 = lr_scheduler.LambdaLR(optimizer2, lr_lambda=lf)
        scheduler2.last_epoch = start_epoch - 1  # see link below
    # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822

    # Plot lr schedule
    # y = []
    # for _ in range(epochs):
    #     scheduler.step()
    #     y.append(optimizer.param_groups[0]['lr'])
    # plt.plot(y, '.-', label='LambdaLR')
    # plt.xlabel('epoch')
    # plt.ylabel('LR')
    # plt.tight_layout()
    # plt.savefig('LR.png', dpi=300)

    model = torch.nn.DataParallel(model).to(device)
    model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level
    dataloader, dataset = create_dataloader(
        opt.train_path,
        opt.input_size,
        batch_size,
        gs,
        hyp=hyp,
        augment=True,
        cache=False,
        rect=False,
        local_rank=-1,  # Model parameters
        world_size=1)
    testloader = create_dataloader(opt.val_path,
                                   opt.input_size,
                                   4,
                                   gs,
                                   hyp=hyp,
                                   augment=False,
                                   cache=False,
                                   rect=True,
                                   local_rank=-1,
                                   world_size=1)[0]
    nw = 8
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.module_list = model.module.module_list
    # Model EMA
    ema = torch_utils.ModelEMA(model)

    # Start training
    nb = len(dataloader)  # number of batches
    n_burn = max(3 * nb,
                 500)  # burn-in iterations, max(3 epochs, 500 iterations)
    maps = np.zeros(nc)  # mAP per class
    # torch.autograd.set_detect_anomaly(True)
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    t0 = time.time()
    # print('Image sizes %g - %g train, %g test' % (imgsz_min, imgsz_max, imgsz_test))
    print('Using %g dataloader workers' % nw)
    print('Starting training for %g epochs...' % epochs)
    start_epoch = 0
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()
        # Update image weights (optional)
        if dataset.image_weights:
            w = model.class_weights.cpu().numpy() * (1 -
                                                     maps)**2  # class weights
            image_weights = labels_to_image_weights(dataset.labels,
                                                    nc=nc,
                                                    class_weights=w)
            dataset.indices = random.choices(range(dataset.n),
                                             weights=image_weights,
                                             k=dataset.n)  # rand weighted idx

        mloss = torch.zeros(4).to(device)  # mean losses
        print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls',
                                     'total', 'targets', 'img_size'))
        pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            # for i, (imgs, targets, paths, _) in enumerate(dataloader):  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device).float(
            ) / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
            if opt.multi_scale:
                sz = random.randrange(
                    opt.input_size * 0.5,
                    opt.input_size * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)
            targets = targets.to(device)

            # Burn-in
            if ni <= n_burn:
                xi = [0, n_burn]  # x interp
                model.gr = np.interp(
                    ni, xi,
                    [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, 64 / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    x['weight_decay'] = np.interp(
                        ni, xi, [0.0, hyp['weight_decay'] if j == 1 else 0.0])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])
            # Forward
            # if opt.sss:
            pred = model(imgs)
            # else:
            #     pred = model(imgs)
            # Loss
            loss, loss_items = compute_loss(pred, targets, model)
            if not torch.isfinite(loss):
                print('WARNING: non-finite loss, ending training ', loss_items)
                return results
            # Backward
            loss *= batch_size / 64  # scale loss
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            # Optimize
            idx2mask = None
            # if opt.sr and opt.prune==1 and epoch > opt.epochs * 0.5:
            #     idx2mask = get_mask2(model, prune_idx, 0.85)

            # BNOptimizer.updateBN(opt.sr_flag, model.module_list, opt.gamma, prune_idx, idx2mask)
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                if opt.sss:
                    optimizer2.step()
                    optimizer2.zero_grad()
                ema.update(model)

            # Print
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            mem = '%.3gG' % (torch.cuda.memory_cached() /
                             1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%10s' * 2 + '%10.3g' * 6) % (
                '%g/%g' %
                (epoch, epochs - 1), mem, *mloss, len(targets), imgs.shape[-1])
            pbar.set_description(s)

            # Plot
            if ni < 1:
                f = 'train_batch%g.jpg' % i  # filename
                res = plot_images(images=imgs,
                                  targets=targets,
                                  paths=paths,
                                  fname=f)
                if tb_writer:
                    tb_writer.add_image(f,
                                        res,
                                        dataformats='HWC',
                                        global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard
            # end batch ------------------------------------------------------------------------------------------------
        # Update scheduler
        scheduler.step()
        # Process epoch results
        ema.update_attr(model)
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            results, maps, times = test.test(
                cfg=opt.cfg,
                names_file=opt.names_classes,
                batch_size=8,
                img_size=opt.input_size,
                conf_thres=0.01,
                save_json=False,
                # model=ema.ema.module if hasattr(ema.ema, 'module') else ema.ema,
                model=ema.ema,
                single_cls=False,
                dataloader=testloader,
                save_dir=wdir)
        if opt.sss:
            print("lambda '{}'\n".format(model.module.lambda_block if hasattr(
                model, 'module') else model.lambda_block))
        if epoch % opt.interval_prune == 0:
            #------------------------------  begin soft prune ---------------------------------------------#
            obtain_num_parameters = lambda model: sum(
                [param.nelement() for param in model.parameters()])
            origin_nparameters = obtain_num_parameters(model)
            from utils.prune_utils import parse_module_defs2, get_global_norm_thr, obtain_filters_mask_norm, merge_mask, prune_soft_model_code, get_layer_norm_thr, obtain_filters_mask_norm_per_layer
            CBL_idx, Conv_idx, prune_idx, _, _ = parse_module_defs2(
                model.module.module_defs if hasattr(model, 'module'
                                                    ) else model.module_defs)
            # norm_thr = get_global_norm_thr(model, prune_idx, opt.global_percent)
            norm_thr_list, norm_prune_index = get_layer_norm_thr(
                model, prune_idx, opt.global_percent)
            print("norm_thr_list is", norm_thr_list)
            # print("norm index is", norm_prune_index)
            num_filters_l2, filters_mask_l2 = obtain_filters_mask_norm_per_layer(
                model,
                norm_thr_list,
                CBL_idx,
                prune_idx,
                layer_keep=opt.layer_keep)
            CBLidx2mask = {
                idx: mask
                for idx, mask in zip(CBL_idx, filters_mask_l2)
            }
            CBLidx2filters = {
                idx: filters
                for idx, filters in zip(CBL_idx, num_filters_l2)
            }
            for i in model.module.module_defs if hasattr(
                    model, 'module') else model.module_defs:
                if i['type'] == 'shortcut':
                    i['is_access'] = False
            # print('merge the mask of layers connected to shortcut!')
            merge_mask(model.module if hasattr(model, 'module') else model,
                       CBLidx2mask, CBLidx2filters)
            prune_soft_model_code(
                model.module if hasattr(model, 'module') else model, CBL_idx,
                CBLidx2mask)
            print("after soft prune, map test ")
            results_sfp, maps_sfp, times_sfp = test.test(
                cfg=opt.cfg,
                names_file=opt.names_classes,
                batch_size=8,
                img_size=opt.input_size,
                conf_thres=0.01,
                save_json=False,
                model=model.module if hasattr(model, 'module') else model,
                single_cls=False,
                dataloader=testloader,
                save_dir=wdir)

        # Write
        with open(results_file, 'a') as f:
            f.write(s + '%10.3g' * 7 % results +
                    '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system('gsutil cp results.txt gs://%s/results/results%s.txt' %
                      (opt.bucket, opt.name))

        # Tensorboard
        if tb_writer:
            tags = [
                'train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5',
                'metrics/F1', 'val/giou_loss', 'val/obj_loss', 'val/cls_loss'
            ]
            for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                tb_writer.add_scalar(tag, x, epoch)
            bn_weights = gather_bn_weights(model.module_list, prune_idx)
            tb_writer.add_histogram('bn_weights/hist',
                                    bn_weights.numpy(),
                                    epoch,
                                    bins='doane')
        # Update best mAP
        fi = fitness(np.array(results).reshape(
            1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        # fisfp = fitness(np.array(results_sfp).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        # if fi-fisfp < 0.05:
        #     with open(results_file, 'r') as f:  # create checkpoint
        #         ckpt = {'epoch': epoch,
        #                 'best_fitness': str(fisfp),
        #                 'training_results': f.read(),
        #                 # 'model': ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(),
        #                 'model': ema.ema.module if hasattr(ema, 'module') else ema.ema,
        #                 'optimizer': None if final_epoch else optimizer.state_dict()}
        #         torch.save(ckpt, last)
        #         if (best_fitness == fi) and not final_epoch:
        #             torch.save(ckpt, best)
        #         del ckpt
        if fi > best_fitness:
            best_fitness = fi

        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            with open(results_file, 'r') as f:  # create checkpoint
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'training_results': f.read(),
                    # 'model': ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(),
                    'model':
                    ema.ema.module if hasattr(ema, 'module') else ema.ema,
                    'optimizer':
                    None if final_epoch else optimizer.state_dict()
                }

            # Save last, best and delete
            torch.save(ckpt, last)
            if (best_fitness == fi) and not final_epoch:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    n = opt.name
    if len(n):
        n = '_' + n if not n.isnumeric() else n
        fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
        for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                ispt = f2.endswith('.pt')  # is *.pt
                strip_optimizer(f2) if ispt else None  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' % (
                    f2, opt.bucket)) if opt.bucket and ispt else None  # upload

    if not opt.evolve:
        plot_results()  # save as results.png
    print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1,
                                                    (time.time() - t0) / 3600))
    dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
    torch.cuda.empty_cache()
    return results
Example #12
0
def run():
    print_environment_info()
    parser = argparse.ArgumentParser(description="Trains the YOLO model.")
    parser.add_argument("-m", "--model", type=str, default="config/yolov3.cfg", help="Path to model definition file (.cfg)")
    parser.add_argument("-d", "--data", type=str, default="config/coco.data", help="Path to data config file (.data)")
    parser.add_argument("-e", "--epochs", type=int, default=300, help="Number of epochs")
    parser.add_argument("-v", "--verbose", action='store_true', help="Makes the training more verbose")
    parser.add_argument("--n_cpu", type=int, default=8, help="Number of cpu threads to use during batch generation")
    parser.add_argument("--pretrained_weights", type=str, help="Path to checkpoint file (.weights or .pth). Starts training from checkpoint model")
    parser.add_argument("--checkpoint_interval", type=int, default=1, help="Interval of epochs between saving model weights")
    parser.add_argument("--evaluation_interval", type=int, default=1, help="Interval of epochs between evaluations on validation set")
    parser.add_argument("--multiscale_training", action="store_false", help="Allow for multi-scale training")
    parser.add_argument("--iou_thres", type=float, default=0.5, help="Evaluation: IOU threshold required to qualify as detected")
    parser.add_argument("--conf_thres", type=float, default=0.1, help="Evaluation: Object confidence threshold")
    parser.add_argument("--nms_thres", type=float, default=0.5, help="Evaluation: IOU threshold for non-maximum suppression")
    parser.add_argument("--logdir", type=str, default="logs", help="Directory for training log files (e.g. for TensorBoard)")
    args = parser.parse_args()
    print("Command line arguments: {}".format(args))

    logger = Logger(args.logdir)  # Tensorboard logger

    # Create output directories if missing
    os.makedirs("output", exist_ok=True)
    os.makedirs("checkpoints", exist_ok=True)

    # Get data configuration
    data_config = parse_data_config(args.data)
    train_path = data_config["train"]
    valid_path = data_config["valid"]
    class_names = load_classes(data_config["names"])
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # ############
    # Create model
    # ############

    model = load_model(args.model, args.pretrained_weights)

    # Print model
    if args.verbose:
        summary(model, input_size=(3, model.hyperparams['height'], model.hyperparams['height']))

    mini_batch_size = model.hyperparams['batch'] // model.hyperparams['subdivisions']

    # #################
    # Create Dataloader
    # #################

    # Load training dataloader
    dataloader = _create_data_loader(
        train_path,
        mini_batch_size,
        model.hyperparams['height'],
        args.n_cpu,
        args.multiscale_training)

    # Load validation dataloader
    validation_dataloader = _create_validation_data_loader(
        valid_path,
        mini_batch_size,
        model.hyperparams['height'],
        args.n_cpu)

    # ################
    # Create optimizer
    # ################

    params = [p for p in model.parameters() if p.requires_grad]

    if (model.hyperparams['optimizer'] in [None, "adam"]):
        optimizer = optim.Adam(
            params,
            lr=model.hyperparams['learning_rate'],
            weight_decay=model.hyperparams['decay'],
        )
    elif (model.hyperparams['optimizer'] == "sgd"):
        optimizer = optim.SGD(
            params,
            lr=model.hyperparams['learning_rate'],
            weight_decay=model.hyperparams['decay'],
            momentum=model.hyperparams['momentum'])
    else:
        print("Unknown optimizer. Please choose between (adam, sgd).")

    for epoch in range(args.epochs):

        print("\n---- Training Model ----")

        model.train()  # Set model to training mode

        for batch_i, (_, imgs, targets) in enumerate(tqdm.tqdm(dataloader, desc="Training Epoch {}".format(epoch))):
            batches_done = len(dataloader) * epoch + batch_i

            imgs = imgs.to(device, non_blocking=True)
            targets = targets.to(device)

            outputs = model(imgs)

            loss, loss_components = compute_loss(outputs, targets, model)

            loss.backward()

            ###############
            # Run optimizer
            ###############

            if batches_done % model.hyperparams['subdivisions'] == 0:
                # Adapt learning rate
                # Get learning rate defined in cfg
                lr = model.hyperparams['learning_rate']
                if batches_done < model.hyperparams['burn_in']:
                    # Burn in
                    lr *= (batches_done / model.hyperparams['burn_in'])
                else:
                    # Set and parse the learning rate to the steps defined in the cfg
                    for threshold, value in model.hyperparams['lr_steps']:
                        if batches_done > threshold:
                            lr *= value
                # Log the learning rate
                logger.scalar_summary("train/learning_rate", lr, batches_done)
                # Set learning rate
                for g in optimizer.param_groups:
                    g['lr'] = lr

                # Run optimizer
                optimizer.step()
                # Reset gradients
                optimizer.zero_grad()

            # ############
            # Log progress
            # ############
            if args.verbose:
                print(AsciiTable(
                    [
                        ["Type", "Value"],
                        ["IoU loss", float(loss_components[0])],
                        ["Object loss", float(loss_components[1])],
                        ["Class loss", float(loss_components[2])],
                        ["Loss", float(loss_components[3])],
                        ["Batch loss", to_cpu(loss).item()],
                    ]).table)

            # Tensorboard logging
            tensorboard_log = [
                ("train/iou_loss", float(loss_components[0])),
                ("train/obj_loss", float(loss_components[1])),
                ("train/class_loss", float(loss_components[2])),
                ("train/loss", to_cpu(loss).item())]
            logger.list_of_scalars_summary(tensorboard_log, batches_done)

            model.seen += imgs.size(0)

        # #############
        # Save progress
        # #############

        # Save model to checkpoint file
        if epoch % args.checkpoint_interval == 0:
            checkpoint_path = "checkpoints/yolov3_ckpt_{}.pth".format(epoch)
            print("---- Saving checkpoint to: '{}' ----".format(checkpoint_path))
            torch.save(model.state_dict(), checkpoint_path)

        # ########
        # Evaluate
        # ########

        if epoch % args.evaluation_interval == 0:
            print("\n---- Evaluating Model ----")
            # Evaluate the model on the validation set
            metrics_output = _evaluate(
                model,
                validation_dataloader,
                class_names,
                img_size=model.hyperparams['height'],
                iou_thres=args.iou_thres,
                conf_thres=args.conf_thres,
                nms_thres=args.nms_thres,
                verbose=args.verbose
            )

            if metrics_output is not None:
                precision, recall, AP, f1, ap_class = metrics_output
                evaluation_metrics = [
                    ("validation/precision", precision.mean()),
                    ("validation/recall", recall.mean()),
                    ("validation/mAP", AP.mean()),
                    ("validation/f1", f1.mean())]
                logger.list_of_scalars_summary(evaluation_metrics, epoch)
Example #13
0
        print("\n---- Training Model ----")
        model.train()  # train 시작
        start_time = time.time()
        for batch_i, (_, imgs, targets) in enumerate(
                tqdm.tqdm(dataloader,
                          desc=f"Training Epoch {epoch}")):  # 미니배치만큼 돌린다
            batches_done = len(
                dataloader
            ) * epoch + batch_i  #len dataloader=minibatch 갯수 , batches_done은 epch의 마지막까지 학습에 이용된 minibatch의 갯수-1이 저장된다.

            imgs = imgs.to(device, non_blocking=True)  #cpu에 있는image를 gpu로 올린다.
            targets = targets.to(device)  #cpu에 있는 label을 gpu로 올린다.

            outputs = model(imgs)  #

            loss, loss_components = compute_loss(
                outputs, targets, model)  # 예측값과 실제값, 모델을 넣어서 loss 값을 계산한다.

            loss.backward()  # loss 값을 backpropagation을

            ###############
            # Run optimizer
            ###############

            if batches_done % model.hyperparams[
                    'subdivisions'] == 0:  # batches_done이 subdivision의 값으로 나누어 떨어지면 아래 조건문 실행-> gpu에 minibatch가 다 안올라가는 경우
                # Adapt learning rate
                # Get learning rate defined in cfg
                lr = model.hyperparams[
                    'learning_rate']  # lr에 learning_rate값 저장
                if batches_done < model.hyperparams[
                        'burn_in']:  # default burn_in=1000, 만약 bathes_done이 burn in 보다 작을 경우 learning rate를 점점 작게 하여 학습속도 감소시킨다.
    else:
        print("Unknown optimizer. Please choose between (adam, sgd).")


    for epoch in range(start_epoch, epochs):
        print("\n---- Training Model ----")

        for batch_i, (_, imgs, targets) in enumerate(train_loader):
            model.train()
            batches_done = len(train_loader) * epoch + batch_i

            imgs = imgs.to(device, non_blocking=True)
            targets = targets.to(device)

            outputs = model(imgs)
            loss, loss_components = compute_loss(outputs, targets, model)
            loss.backward()

            ###############
            # Run optimizer
            ###############
            if batches_done % model.hyperparams['subdivisions'] == 0:
                # Adapt learning rate
                # Get learning rate defined in cfg
                lr = model.hyperparams['learning_rate']
                if batches_done < model.hyperparams['burn_in']:
                    # Burn in
                    lr *= (batches_done / model.hyperparams['burn_in'])
                else:
                    # Set and parse the learning rate to the steps defined in the cfg
                    for threshold, value in model.hyperparams['lr_steps']:
Example #15
0
def test(
        data,
        weights=None,
        batch_size=32,
        imgsz=640,
        conf_thres=0.001,
        iou_thres=0.6,  # for NMS
        save_json=False,
        single_cls=False,
        augment=False,
        verbose=False,
        model=None,
        dataloader=None,
        save_dir=Path(''),  # for saving images
        save_txt=False,  # for auto-labelling
        save_hybrid=False,  # for hybrid auto-labelling
        save_conf=False,  # save auto-label confidences
        plots=True,
        log_imgs=0):  # number of logged images

    # Initialize/load model and set device
    # 判断是否在训练时调用test,如果是则获取训练时的设备
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(opt.device, batch_size=batch_size)

        # Directories
        save_dir = Path(
            increment_path(Path(opt.project) / opt.name,
                           exist_ok=opt.exist_ok))  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        # 检查输入图片分辨率是否能被模型的最大步长(默认32)整除
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    # 如果设备不是cpu并且gpu数目为1,则将模型由Float32转为Float16,提高前向传播的速度
    half = device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()  # to FP16

    # Configure
    # 加载数据配置信息
    model.eval()
    is_coco = data.endswith('coco.yaml')  # is COCO dataset
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    check_dataset(data)  # check
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    # 设置iou阈值,从0.5~0.95,每间隔0.05取一次
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    # iou个数
    niou = iouv.numel()

    # Logging
    log_imgs, wandb = min(log_imgs, 100), None  # ceil
    try:
        import wandb  # Weights & Biases
    except ImportError:
        log_imgs = 0

    # Dataloader
    if not training:
        # 创建一个全0数组测试一下前向传播是否正常运行
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img
                  ) if device.type != 'cpu' else None  # run once
        # 获取图片路径
        path = data['test'] if opt.task == 'test' else data[
            'val']  # path to val/test images

        # 创建dataloader
        # 注意这里rect参数为True,yolov5的测试评估是基于矩形推理的
        dataloader = create_dataloader(
            path,
            imgsz,
            batch_size,
            model.stride.max(),
            opt,
            pad=0.5,
            rect=True,
            prefix=colorstr('test: ' if opt.task == 'test' else 'val: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    # 获取类别的名字
    names = {
        k: v
        for k, v in enumerate(
            model.names if hasattr(model, 'names') else model.module.names)
    }
    """
    获取coco数据集的类别索引
    这里要说明一下,coco数据集有80个类别(索引范围应该为0~79),
    但是他的索引却属于0~90(笔者是通过查看coco数据测试集的json文件发现的,具体原因不知)
    coco80_to_coco91_class()就是为了与上述索引对应起来,返回一个范围在0~90的索引数组
    """
    coco91class = coco80_to_coco91_class()
    # 设置tqdm进度条的显示信息
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R',
                                 '[email protected]', '[email protected]:.95')
    # 初始化指标,时间
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    # 初始化测试集的损失
    loss = torch.zeros(3, device=device)
    # 初始化json文件的字典,统计信息,ap
    jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []

    for batch_i, (img, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device, non_blocking=True)
        # 图片也由Float32->Float16
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width

        with torch.no_grad():
            # Run model
            """
                time_synchronized()函数里面进行了torch.cuda.synchronize(),再返回的time.time()
                torch.cuda.synchronize()等待gpu上完成所有的工作
                总的来说就是这样测试时间会更准确 
            """
            t = time_synchronized()
            # inf_out为预测结果, train_out训练结果
            inf_out, train_out = model(
                img, augment=augment)  # inference and training outputs
            t0 += time_synchronized() - t

            # Compute loss
            # 如果是在训练时进行的test,则通过训练结果计算并返回测试集的GIoU, obj, cls损失
            if training:
                loss += compute_loss([x.float() for x in train_out], targets,
                                     model)[1][:3]  # box, obj, cls

            # Run NMS
            targets[:, 2:] *= torch.Tensor([width, height, width,
                                            height]).to(device)  # to pixels
            lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)
                  ] if save_hybrid else []  # for autolabelling
            t = time_synchronized()
            """
                non_max_suppression进行非极大值抑制;
                conf_thres为置信度阈值,iou_thres为iou阈值
                merge为是否合并框
            """
            output = non_max_suppression(inf_out,
                                         conf_thres=conf_thres,
                                         iou_thres=iou_thres,
                                         labels=lb)
            t1 += time_synchronized() - t

        # Statistics per image
        # 为每一张图片做统计, 写入预测信息到txt文件, 生成json文件字典, 统计tp等
        for si, pred in enumerate(output):
            # 获取第si张图片的标签信息, 包括class,x,y,w,h
            # targets[:, 0]为标签属于哪一张图片的编号
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            # 获取标签类别
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path = Path(paths[si])
            # 统计测试图片数量
            seen += 1
            # 如果预测为空,则添加空的信息到stats里
            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0],
                         shapes[si][1])  # native-space pred

            # Append to text file
            # 保存预测结果为txt文件
            if save_txt:
                # 获得对应图片的长和宽
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0
                                                  ]]  # normalization gain whwh
                for *xyxy, conf, cls in predn.tolist():
                    # xyxy格式->xywh, 并对坐标进行归一化处理
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                            gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh,
                            conf) if save_conf else (cls,
                                                     *xywh)  # label format
                    with open(save_dir / 'labels' / (path.stem + '.txt'),
                              'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

            # W&B logging
            if plots and len(wandb_images) < log_imgs:
                box_data = [{
                    "position": {
                        "minX": xyxy[0],
                        "minY": xyxy[1],
                        "maxX": xyxy[2],
                        "maxY": xyxy[3]
                    },
                    "class_id": int(cls),
                    "box_caption": "%s %.3f" % (names[cls], conf),
                    "scores": {
                        "class_score": conf
                    },
                    "domain": "pixel"
                } for *xyxy, conf, cls in pred.tolist()]
                boxes = {
                    "predictions": {
                        "box_data": box_data,
                        "class_labels": names
                    }
                }  # inference-space
                wandb_images.append(
                    wandb.Image(img[si], boxes=boxes, caption=path.name))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(
                    path.stem) if path.stem.isnumeric() else path.stem
                box = xyxy2xywh(predn[:, :4])  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({
                        'image_id':
                        image_id,
                        'category_id':
                        coco91class[int(p[5])] if is_coco else int(p[5]),
                        'bbox': [round(x, 3) for x in b],
                        'score':
                        round(p[4], 5)
                    })

            # Assign all predictions as incorrect
            # 初始化预测评定,niou为iou阈值的个数
            correct = torch.zeros(pred.shape[0],
                                  niou,
                                  dtype=torch.bool,
                                  device=device)
            if nl:
                # detected用来存放已检测到的目标
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                # 获得xyxy格式的框并乘以wh
                tbox = xywh2xyxy(labels[:, 1:5])
                # 将预测框的坐标调整到基于其原本长宽的坐标
                scale_coords(img[si].shape[1:], tbox, shapes[si][0],
                             shapes[si][1])  # native-space labels
                if plots:
                    confusion_matrix.process_batch(
                        pred, torch.cat((labels[:, 0:1], tbox), 1))

                # Per target class
                # 对图片中的每个类单独处理
                for cls in torch.unique(tcls_tensor):
                    # 标签框该类别的索引
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(
                        -1)  # prediction indices
                    # 预测框该类别的索引
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(
                        -1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        """
                        Prediction to target ious
                            box_iou计算预测框与标签框的iou值,max(1)选出最大的ious值,i为对应的索引
                            pred shape[N, 4]
                            tbox shape[M, 4]
                            box_iou shape[N, M]
                            ious shape[N, 1]
                            i shape[N, 1], i里的值属于0~M
                        """
                        ious, i = box_iou(predn[pi, :4], tbox[ti]).max(
                            1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            # 获得检测到的目标
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                # iouv为以0.05为步长 0.5到0.95的序列
                                # 获得不同iou阈值下的true positive
                                correct[
                                    pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(
                                        detected
                                ) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            # 每张图片的结果统计到stats里
            stats.append(
                (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        # 画出第1个batch的图片的ground truth和预测框并保存
        if plots and batch_i < 3:
            f = save_dir / f'test_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images,
                   args=(img, targets, paths, f, names),
                   daemon=True).start()
            f = save_dir / f'test_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images,
                   args=(img, output_to_target(output), paths, f, names),
                   daemon=True).start()

    # Compute statistics
    # 将stats列表的信息拼接到一起
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        # 根据上面得到的tp等信息计算指标
        # 精准度TP/TP+FP,召回率TP/P,map,f1分数,类别
        p, r, ap, f1, ap_class = ap_per_class(*stats,
                                              plot=plots,
                                              save_dir=save_dir,
                                              names=names)
        p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(
            1)  # [P, R, [email protected], [email protected]:0.95]
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        # nt是一个列表,测试集每个类别有多少个标签框
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc <= 20 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3
              for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print(
            'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g'
            % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        if wandb and wandb.run:
            wandb.log({"Images": wandb_images})
            wandb.log({
                "Validation": [
                    wandb.Image(str(f), caption=f.name)
                    for f in sorted(save_dir.glob('test*.jpg'))
                ]
            })

    # Save JSON
    # 采用之前保存的json格式预测结果,通过cocoapi评估指标
    # 需要注意的是 测试集的标签也需要转成coco的json格式
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights
                 ).stem if weights is not None else ''  # weights
        anno_json = '../coco/annotations/instances_val2017.json'  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [
                    int(Path(x).stem) for x in dataloader.dataset.img_files
                ]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print(f'pycocotools unable to run: {e}')

    # Return results
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    model.float()  # for training
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t
Example #16
0
def train(hyp, opt, tb_writer=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, weights = Path(
        opt.save_dir), opt.epochs, opt.batch_size, opt.weights

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pkl'
    best = wdir / 'best.pkl'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = not opt.no_cuda
    if cuda:
        jt.flags.use_cuda = 1

    init_seeds(1)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict

    check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    model = Model(opt.cfg, ch=3, nc=nc)  # create
    pretrained = weights.endswith('.pkl')
    if pretrained:
        model.load(weights)  # load

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, jt.Var):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, jt.Var):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = optim.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    loggers = {}  # loggers dict

    start_epoch, best_fitness = 0, 0.0

    # Image sizes
    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # EMA
    ema = ModelEMA(model)

    # Trainloader
    dataloader = create_dataloader(train_path,
                                   imgsz,
                                   batch_size,
                                   gs,
                                   opt,
                                   hyp=hyp,
                                   augment=True,
                                   cache=opt.cache_images,
                                   rect=opt.rect,
                                   workers=opt.workers,
                                   image_weights=opt.image_weights,
                                   quad=opt.quad,
                                   prefix=colorstr('train: '))

    mlc = np.concatenate(dataloader.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    ema.updates = start_epoch * nb // accumulate  # set EMA updates
    testloader = create_dataloader(
        test_path,
        imgsz_test,
        batch_size,
        gs,
        opt,  # testloader
        hyp=hyp,
        cache=opt.cache_images and not opt.notest,
        rect=True,
        workers=opt.workers,
        pad=0.5,
        prefix=colorstr('val: '))

    labels = np.concatenate(dataloader.labels, 0)
    c = jt.array(labels[:, 0])  # classes

    # cf = torch.bincount(c.int(), minlength=nc) + 1.  # frequency
    # model._initialize_biases(cf)
    if plots:
        plot_labels(labels, save_dir, loggers)
        if tb_writer:
            tb_writer.add_histogram('classes', c.numpy(), 0)

    # Anchors
    if not opt.noautoanchor:
        check_anchors(dataloader,
                      model=model,
                      thr=hyp['anchor_t'],
                      imgsz=imgsz)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataloader.labels, nc) * nc  # attach class weights
    model.names = names
    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            cw = model.class_weights.numpy() * (1 -
                                                maps)**2 / nc  # class weights
            iw = labels_to_image_weights(dataloader.labels,
                                         nc=nc,
                                         class_weights=cw)  # image weights
            dataloader.indices = random.choices(
                range(dataloader.n), weights=iw,
                k=dataloader.n)  # rand weighted idx

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = jt.zeros((4, ))  # mean losses
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 7) %
            ('Epoch', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
        pbar = tqdm(pbar, total=nb)  # progress bar
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                # accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())

                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = nn.interpolate(imgs,
                                          size=ns,
                                          mode='bilinear',
                                          align_corners=False)
            # Forward
            pred = model(imgs)  # forward
            loss, loss_items = compute_loss(pred, targets,
                                            model)  # loss scaled by batch_size
            if opt.quad:
                loss *= 4.

            # Optimize
            optimizer.step(loss)
            if ema:
                ema.update(model)

            # Print
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            s = ('%10s' + '%10.4g' * 6) % ('%g/%g' %
                                           (epoch, epochs - 1), *mloss,
                                           targets.shape[0], imgs.shape[-1])
            pbar.set_description(s)

            # Plot
            if plots and ni < 3:
                f = save_dir / f'train_batch{ni}.jpg'  # filename
                Thread(target=plot_images,
                       args=(imgs, targets, paths, f),
                       daemon=True).start()
                # if tb_writer:
                #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                #     tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # mAP
        if ema:
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            results, maps, times = test.test(data=opt.data,
                                             batch_size=batch_size,
                                             imgsz=imgsz_test,
                                             model=ema.ema,
                                             single_cls=opt.single_cls,
                                             dataloader=testloader,
                                             save_dir=save_dir,
                                             plots=plots and final_epoch)

        # Write
        with open(results_file, 'a') as f:
            f.write(s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                      (results_file, opt.bucket, opt.name))

        # Log
        tags = [
            'train/box_loss',
            'train/obj_loss',
            'train/cls_loss',  # train loss
            'metrics/precision',
            'metrics/recall',
            'metrics/mAP_0.5',
            'metrics/mAP_0.5-0.95',
            'val/box_loss',
            'val/obj_loss',
            'val/cls_loss',  # val loss
            'x/lr0',
            'x/lr1',
            'x/lr2'
        ]  # params
        for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
            if tb_writer:
                if hasattr(x, "numpy"):
                    x = x.numpy()
                tb_writer.add_scalar(tag, x, epoch)  # tensorboard

        # Update best mAP
        fi = fitness(np.array(results).reshape(
            1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
        if fi > best_fitness:
            best_fitness = fi

        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            # Save last, best and delete
            jt.save(ema.ema.state_dict(), last)
            if best_fitness == fi:
                jt.save(ema.ema.state_dict(), best)
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    # Strip optimizers
    final = best if best.exists() else last  # final model
    if opt.bucket:
        os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload

    # Plots
    if plots:
        plot_results(save_dir=save_dir)  # save as results.png

    # Test best.pkl
    logger.info('%g epochs completed in %.3f hours.\n' %
                (epoch - start_epoch + 1, (time.time() - t0) / 3600))
    best_model = Model(opt.cfg)
    best_model.load(str(final))
    best_model = best_model.fuse()
    if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
        for conf, iou, save_json in ([0.25, 0.45,
                                      False], [0.001, 0.65,
                                               True]):  # speed, mAP tests
            results, _, _ = test.test(opt.data,
                                      batch_size=total_batch_size,
                                      imgsz=imgsz_test,
                                      conf_thres=conf,
                                      iou_thres=iou,
                                      model=best_model,
                                      single_cls=opt.single_cls,
                                      dataloader=testloader,
                                      save_dir=save_dir,
                                      save_json=save_json,
                                      plots=False)

    return results
Example #17
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f"Hyperparameters {hyp}")
    save_dir, epochs, batch_size, total_batch_size, weights, rank = (
        Path(opt.save_dir),
        opt.epochs,
        opt.batch_size,
        opt.total_batch_size,
        opt.weights,
        opt.global_rank,
    )

    # Directories
    wdir = save_dir / "weights"
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / "last.pt"
    best = wdir / "best.pt"
    results_file = save_dir / "results.txt"

    # Save run settings
    with open(save_dir / "hyp.yaml", "w") as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / "opt.yaml", "w") as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != "cpu"
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict["train"]
    test_path = data_dict["val"]
    nc, names = (
        (1, ["item"]) if opt.single_cls else (int(data_dict["nc"]), data_dict["names"])
    )  # number classes, names
    assert len(names) == nc, "%g names found for nc=%g dataset in %s" % (
        len(names),
        nc,
        opt.data,
    )  # check

    # Model
    pretrained = weights.endswith(".pt")
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get("anchors"):
            ckpt["model"].yaml["anchors"] = round(hyp["anchors"])  # force autoanchor
        model = Model(opt.cfg or ckpt["model"].yaml, ch=3, nc=nc).to(device)  # create
        exclude = ["anchor"] if opt.cfg or hyp.get("anchors") else []  # exclude keys
        state_dict = ckpt["model"].float().state_dict()  # to FP32
        state_dict = intersect_dicts(
            state_dict, model.state_dict(), exclude=exclude
        )  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            "Transferred %g/%g items from %s"
            % (len(state_dict), len(model.state_dict()), weights)
        )  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print("freezing %s" % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(
        round(nbs / total_batch_size), 1
    )  # accumulate loss before optimizing
    hyp["weight_decay"] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(
            pg0, lr=hyp["lr0"], betas=(hyp["momentum"], 0.999)
        )  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(
            pg0, lr=hyp["lr0"], momentum=hyp["momentum"], nesterov=True
        )

    optimizer.add_param_group(
        {"params": pg1, "weight_decay": hyp["weight_decay"]}
    )  # add pg1 with weight_decay
    optimizer.add_param_group({"params": pg2})  # add pg2 (biases)
    logger.info(
        "Optimizer groups: %g .bias, %g conv.weight, %g other"
        % (len(pg2), len(pg1), len(pg0))
    )
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = (
        lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp["lrf"])
        + hyp["lrf"]
    )  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get("wandb_id") if "ckpt" in locals() else None,
        )

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt["optimizer"] is not None:
            optimizer.load_state_dict(ckpt["optimizer"])
            best_fitness = ckpt["best_fitness"]

        # Results
        if ckpt.get("training_results") is not None:
            with open(results_file, "w") as file:
                file.write(ckpt["training_results"])  # write results.txt

        # Epochs
        start_epoch = ckpt["epoch"] + 1
        if opt.resume:
            assert (
                start_epoch > 0
            ), "%s training to %g epochs is finished, nothing to resume." % (
                weights,
                epochs,
            )
        if epochs < start_epoch:
            logger.info(
                "%s has been trained for %g epochs. Fine-tuning for %g additional epochs."
                % (weights, ckpt["epoch"], epochs)
            )
            epochs += ckpt["epoch"]  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [
        check_img_size(x, gs) for x in opt.img_size
    ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info("Using SyncBatchNorm()")

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size,
        gs,
        opt,
        hyp=hyp,
        augment=True,
        cache=opt.cache_images,
        rect=opt.rect,
        rank=rank,
        world_size=opt.world_size,
        workers=opt.workers,
    )
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert (
        mlc < nc
    ), "Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g" % (
        mlc,
        nc,
        opt.data,
        nc - 1,
    )

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
        )[
            0
        ]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir=save_dir)
                if tb_writer:
                    tb_writer.add_histogram("classes", c, 0)
                if wandb:
                    wandb.log(
                        {
                            "Labels": [
                                wandb.Image(str(x), caption=x.name)
                                for x in save_dir.glob("*labels*.png")
                            ]
                        }
                    )

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)

    # Model parameters
    hyp["cls"] *= nc / 80.0  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device
    )  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(
        round(hyp["warmup_epochs"] * nb), 1000
    )  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info(
        "Image sizes %g train, %g test\n"
        "Using %g dataloader workers\nLogging results to %s\n"
        "Starting training for %g epochs..."
        % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs)
    )
    for epoch in range(
        start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = (
                    model.class_weights.cpu().numpy() * (1 - maps) ** 2
                )  # class weights
                iw = labels_to_image_weights(
                    dataset.labels, nc=nc, class_weights=cw
                )  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw, k=dataset.n
                )  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (
                    torch.tensor(dataset.indices)
                    if rank == 0
                    else torch.zeros(dataset.n)
                ).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ("\n" + "%10s" * 8)
            % ("Epoch", "gpu_mem", "box", "obj", "cls", "total", "targets", "img_size")
        )
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
            imgs,
            targets,
            paths,
            _,
        ) in (
            pbar
        ):  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = (
                imgs.to(device, non_blocking=True).float() / 255.0
            )  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()
                )
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x["lr"] = np.interp(
                        ni,
                        xi,
                        [
                            hyp["warmup_bias_lr"] if j == 2 else 0.0,
                            x["initial_lr"] * lf(epoch),
                        ],
                    )
                    if "momentum" in x:
                        x["momentum"] = np.interp(
                            ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]
                        )

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [
                        math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                    ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(
                        imgs, size=ns, mode="bilinear", align_corners=False
                    )

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device), model
                )  # loss scaled by batch_size
                if rank != -1:
                    loss *= (
                        opt.world_size
                    )  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = "%.3gG" % (
                    torch.cuda.memory_reserved() / 1e9
                    if torch.cuda.is_available()
                    else 0
                )  # (GB)
                s = ("%10s" * 2 + "%10.4g" * 6) % (
                    "%g/%g" % (epoch, epochs - 1),
                    mem,
                    *mloss,
                    targets.shape[0],
                    imgs.shape[-1],
                )
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f"train_batch{ni}.jpg"  # filename
                    plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log(
                        {
                            "Mosaics": [
                                wandb.Image(str(x), caption=x.name)
                                for x in save_dir.glob("train*.jpg")
                            ]
                        }
                    )

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x["lr"] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model, include=["yaml", "nc", "hyp", "gr", "names", "stride"]
                )
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0,
                )

            # Write
            with open(results_file, "a") as f:
                f.write(
                    s + "%10.4g" * 7 % results + "\n"
                )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system(
                    "gsutil cp %s gs://%s/results/results%s.txt"
                    % (results_file, opt.bucket, opt.name)
                )

            # Log
            tags = [
                "train/box_loss",
                "train/obj_loss",
                "train/cls_loss",  # train loss
                "metrics/precision",
                "metrics/recall",
                "metrics/mAP_0.5",
                "metrics/mAP_0.5:0.95",
                "val/box_loss",
                "val/obj_loss",
                "val/cls_loss",  # val loss
                "x/lr0",
                "x/lr1",
                "x/lr2",
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(
                np.array(results).reshape(1, -1)
            )  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, "r") as f:  # create checkpoint
                    ckpt = {
                        "epoch": epoch,
                        "best_fitness": best_fitness,
                        "training_results": f.read(),
                        "model": ema.ema,
                        "optimizer": None if final_epoch else optimizer.state_dict(),
                        "wandb_id": wandb_run.id if wandb else None,
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ""
        fresults, flast, fbest = (
            save_dir / f"results{n}.txt",
            wdir / f"last{n}.pt",
            wdir / f"best{n}.pt",
        )
        for f1, f2 in zip(
            [wdir / "last.pt", wdir / "best.pt", results_file], [flast, fbest, fresults]
        ):
            if f1.exists():
                os.rename(f1, f2)  # rename
                if str(f2).endswith(".pt"):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        "gsutil cp %s gs://%s/weights" % (f2, opt.bucket)
                    ) if opt.bucket else None  # upload
        # Finish
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    "results.png",
                    "precision_recall_curve.png",
                    "confusion_matrix.png",
                ]
                wandb.log(
                    {
                        "Results": [
                            wandb.Image(str(save_dir / f), caption=f)
                            for f in files
                            if (save_dir / f).exists()
                        ]
                    }
                )
        logger.info(
            "%g epochs completed in %.3f hours.\n"
            % (epoch - start_epoch + 1, (time.time() - t0) / 3600)
        )
    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
def drivethru_0001_alexnet_cifar(config_data, tab_level=0, verbose=250):
    print('drivethru_0001_alexnet_mnist()')
    PROGRESS_TRACK_EVERY_N_PERCENT = 5.

    tracker_name = 'drivethru_0001_alexnet_cifar'
    config_data = set_debug_config(IS_DEBUG, config_data)
    pm.print_recursive_dict(config_data,
                            tab_level=tab_level + 2,
                            verbose=verbose,
                            verbose_threshold=None)

    data_loader = load_cifar_0001(config_data,
                                  train=True,
                                  shuffle=True,
                                  verbose=verbose)
    n_batch_train = len(data_loader)
    # print('n_batch_train:%s'%(str(n_batch_train))) #12500 data for batch size= 4

    autoreloader = AutoReloaderTestCIFAR(config_data, shuffle=True)
    eval_every_n_iter = get_eval_every_n_iter(
        config_data,
        n_batch_train,
        config_data['general']['epoch'],
        NO_OF_EVALUATION_DESIRED=config_data['drivethru']
        ['no_of_evals_per_run'],
        manual_specification=False,
        DEBUG_N_ITER_MAX_PER_EPOCH=DEBUG_N_ITER_MAX_PER_EPOCH)

    state_tracker = setup_state_tracker(config_data,
                                        tracker_name,
                                        for_training=True,
                                        verbose=250,
                                        tab_level=0)
    net = new_or_load_model(state_tracker,
                            config_data,
                            verbose=verbose,
                            tab_level=tab_level)
    criterion, optimizer = setup_training_tools_0001(net,
                                                     config_data,
                                                     verbose=verbose,
                                                     tab_level=tab_level + 1)

    save_data_by_iter_details = {}  # split save data by runs
    total_iter_in_this_run = 0
    total_global_iter = state_tracker.save_data_by_nth_run[
        state_tracker.current_run]['total_iteration']
    last_saved_epoch = 1 + state_tracker.get_latest_saved_epoch()
    progress_tracker = int(n_batch_train /
                           (100 / PROGRESS_TRACK_EVERY_N_PERCENT))

    pm.printv('Start drive through...' % (), tab_level=tab_level)
    for n_epoch in range(last_saved_epoch,
                         last_saved_epoch + config_data['general']['epoch']):
        state_tracker.setup_for_this_epoch(n_epoch,
                                           tab_level=tab_level + 1,
                                           verbose=verbose)
        for i, data in enumerate(data_loader, 0):
            print_progress_percentage(i,
                                      progress_tracker,
                                      n_batch_train,
                                      verbose=250,
                                      tab_level=tab_level + 1)
            # if emergency_drivethru_loop(EMERGENCY_DRIVETHRU_LOOP_SIGNAL, total_iter_in_this_run, eval_every_n_iter): total_iter_in_this_run += 1; continue

            optimizer.zero_grad()

            x, y0 = data
            x = x.to(this_device)
            net.train()
            y = net(x)

            loss = compute_loss(criterion, y.squeeze(3).squeeze(2).cpu(), y0)
            loss.backward()
            optimizer.step()

            # Drive through LRP and evaluation
            if (total_iter_in_this_run + 1) % eval_every_n_iter == 0:
                save_data_by_iter_details, autoreloader = drive_thru_evaluation(
                    net,
                    autoreloader,
                    x,
                    y,
                    y0,
                    save_data_by_iter_details,
                    i,
                    total_global_iter + total_iter_in_this_run,
                    n_epoch,
                    n_of_test_data_per_eval=config_data['drivethru']
                    ['n_of_test_data_per_eval'],
                    n_of_test_data_per_LRP_eval=config_data['drivethru']
                    ['n_of_test_data_per_LRP_eval'],
                    DEBUG_DRIVE_TRHU_LOOP=DEBUG_DRIVE_TRHU_LOOP,
                    tab_level=tab_level + 1,
                    verbose=verbose)
                # just_in_time_display(save_data_by_iter_details, verbose=verbose, tab_level=tab_level+1)
                if DEBUG_DRIVE_TRHU_LOOP: return

            # FOR LOGGING
            total_iter_in_this_run += 1
            state_tracker.store_loss_by_epoch(loss.item(), n_epoch)

            stop_iter, stop_epoch = DEBUG_train_loop_0002(
                DEBUG_N_ITER_MAX_PER_EPOCH,
                i,
                n_epoch - last_saved_epoch,
                tab_level=tab_level + 1,
                verbose=verbose)
            if stop_iter: break
        if DEBUG_DRIVE_TRHU_LOOP2: return
        state_tracker.update_epoch()
        if stop_epoch: break

    state_tracker.save_data_by_iter_details = save_data_by_iter_details
    state_tracker.update_state(total_iter_in_this_run, config_data)
    save_model_by_n_th_run(net,
                           state_tracker,
                           tab_level=tab_level,
                           verbose=verbose)
    state_tracker.display_end_state(tab_level=tab_level + 1, verbose=verbose)
Example #19
0
def test(cfg = None,
         data = None,
         weights=None,
         batch_size=32,
         imgsz=640,
         conf_thres=0.001,
         iou_thres=0.6,  # for NMS
         save_json=False,
         single_cls=False,
         augment=False,
         verbose=False,
         model=None,
         dataloader=None,
         save_dir=Path(''),  # for saving images
         save_txt=False,  # for auto-labelling
         save_hybrid=False,  # for hybrid auto-labelling
         save_conf=False,  # save auto-label confidences
         plots=True): 

    # Initialize/load model and set device
    training = model is not None
    if not training:  # called by train.py
        # called directly
        set_logging()
        # Directories
        save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

        # Load model
        model = Model(cfg)
        model.load(weights)
        model = model.fuse()
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

    # Configure
    model.eval()
    is_coco = data.endswith('coco.yaml')  # is COCO dataset
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    check_dataset(data)  # check
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = jt.linspace(0.5, 0.95, 10)  # iou vector for [email protected]:0.95
    niou = iouv.numel()


    # Dataloader
    if not training:
        img = jt.zeros((1, 3, imgsz, imgsz))  # init img
        path = data['test'] if opt.task == 'test' else data['val']  # path to val/test images
        dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, pad=0.5, rect=True,
                                       prefix=colorstr('test: ' if opt.task == 'test' else 'val: '))

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = jt.zeros((3,))
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.float32()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets
        nb, _, height, width = img.shape  # batch size, channels, height, width

        with jt.no_grad():
            # Run model
            t = time_synchronized()
            inf_out, train_out = model(img, augment=augment)  # inference and training outputs
            t0 += time_synchronized() - t

            # Compute loss
            if training:
                loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3]  # box, obj, cls

            # Run NMS
            targets[:, 2:] *= jt.array([width, height, width, height])  # to pixels
            lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
            t = time_synchronized()
            output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb)
            t1 += time_synchronized() - t
        
        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path = Path(paths[si])
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((jt.zeros((0, niou), dtype="bool"), jt.array([]), jt.array([]), tcls))
                continue
            
            # Predictions
            predn = pred.clone()
            predn[:, :4] = scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1])  # native-space pred

            # Append to text file
            if save_txt:
                gn = jt.array(shapes[si][0])[jt.array([1, 0, 1, 0])]  # normalization gain whwh
                for *xyxy, conf, cls in predn.tolist():
                    xywh = (xyxy2xywh(jt.array(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                    with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(path.stem) if path.stem.isnumeric() else path.stem
                box = xyxy2xywh(predn[:, :4])  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({'image_id': image_id,
                                  'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
                                  'bbox': [round(x, 3) for x in b],
                                  'score': round(p[4], 5)})

            # Assign all predictions as incorrect
            correct = jt.zeros((pred.shape[0], niou), dtype="bool")
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5])
                tbox = scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1])  # native-space labels
                if plots:
                    confusion_matrix.process_batch(predn, jt.contrib.concat((labels[:, 0:1], tbox), 1))

                # Per target class
                for cls in jt.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero().view(-1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero().view(-1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        i ,ious = box_iou(predn[pi, :4], tbox[ti]).argmax(1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero():
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(detected) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append((correct.numpy(), pred[:, 4].numpy(), pred[:, 5].numpy(), tcls))
        
        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'test_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
            f = save_dir / f'test_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start()

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = np.zeros((1,))

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc <= 20 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
        anno_json = '../coco/annotations/instances_val2017.json'  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print(f'pycocotools unable to run: {e}')

    # Return results
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.numpy() / len(dataloader)).tolist()), maps, t
def test(data,
         weights=None,
         batch_size=16,
         imgsz=640,
         conf_thres=0.001,
         iou_thres=0.6,  # for NMS
         save_json=False,
         single_cls=False,
         augment=False,
         verbose=False,
         model=None,
         dataloader=None,
         save_dir=Path(''),  # for saving images
         save_txt=False,  # for auto-labelling
         save_conf=False,
         plots=True,
         log_imgs=0):  # number of logged images

    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(opt.device, batch_size=batch_size)
        save_txt = opt.save_txt  # save *.txt labels

        # Directories
        save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half = device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    is_coco = data.endswith('coco.yaml')  # is COCO dataset
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    check_dataset(data)  # check
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Logging
    log_imgs, wandb = min(log_imgs, 100), None  # ceil
    try:
        import wandb  # Weights & Biases
    except ImportError:
        log_imgs = 0

    # Dataloader
    if not training:
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
        path = data['test'] if opt.task == 'test' else data['val']  # path to val/test images
        dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0]

    seen = 0
    names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        whwh = torch.Tensor([width, height, width, height]).to(device)

        # Disable gradients
        with torch.no_grad():
            # Run model
            t = time_synchronized()
            inf_out, train_out = model(img, augment=augment)  # inference and training outputs
            t0 += time_synchronized() - t

            # Compute loss
            if training:  # if model has loss hyperparameters
                loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3]  # box, obj, cls

            # Run NMS
            t = time_synchronized()
            output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres)
            t1 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path = Path(paths[si])
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1])  # native-space pred

            # Append to text file
            if save_txt:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]]  # normalization gain whwh
                for *xyxy, conf, cls in predn.tolist():
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                    with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

            # W&B logging
            if plots and len(wandb_images) < log_imgs:
                box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
                             "class_id": int(cls),
                             "box_caption": "%s %.3f" % (names[cls], conf),
                             "scores": {"class_score": conf},
                             "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
                boxes = {"predictions": {"box_data": box_data, "class_labels": names}}  # inference-space
                wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(path.stem) if path.stem.isnumeric() else path.stem
                box = xyxy2xywh(predn[:, :4])  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({'image_id': image_id,
                                  'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
                                  'bbox': [round(x, 3) for x in b],
                                  'score': round(p[4], 5)})

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5]) * whwh
                scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1])  # native-space labels

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(detected) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'test_batch{batch_i}_labels.jpg'  # filename
            plot_images(img, targets, paths, f, names)  # labels
            f = save_dir / f'test_batch{batch_i}_pred.jpg'
            plot_images(img, output_to_target(output, width, height), paths, f, names)  # predictions

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
        p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1)  # [P, R, [email protected], [email protected]:0.95]
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # W&B logging
    if plots and wandb and wandb.run:
        wandb.log({"Images": wandb_images})
        wandb.log({"Validation": [wandb.Image(str(x), caption=x.name) for x in sorted(save_dir.glob('test*.jpg'))]})

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
        anno_json = glob.glob('../coco/annotations/instances_val*.json')[0]  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print('ERROR: pycocotools unable to run: %s' % e)

    # Return results
    if not training:
        print('Results saved to %s' % save_dir)
    model.float()  # for training
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
Example #21
0
def test(
        cfg,
        names_file,
        path=None,
        weights=None,
        batch_size=16,
        img_size=416,
        conf_thres=0.001,
        iou_thres=0.6,  # for nms
        save_json=False,
        single_cls=False,
        augment=False,
        model=None,
        dataloader=None,
        type='v3',
        save_dir=None):
    # Initialize/load model and set device
    assert (model or path)
    if model is None:
        device = torch_utils.select_device(opt.device, batch_size)
        verbose = opt.task == 'test'

        # Remove previous
        for f in glob.glob('test_batch*.jpg'):
            os.remove(f)

        # Initialize model
        model = Darknet(cfg, img_size, type)

        # Load weights
        # attempt_download(weights)
        if weights.endswith('.pt'):  # pytorch format
            model.load_state_dict(
                torch.load(weights, map_location=device)['model'].state_dict())
        else:  # darknet format
            load_darknet_weights(model, weights)

        # Fuse
        model.fuse()
        model.to(device)

        if device.type != 'cpu' and torch.cuda.device_count() > 1:
            model = nn.DataParallel(model)
    else:  # called by train.py
        device = next(model.parameters()).device  # get model device
        verbose = False

    # Configure run
    nc = 1 if single_cls else int(len(
        open(names_file).readlines()))  # number of classes
    names = load_classes(names_file)  # class names
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    iouv = iouv[0].view(1)  # comment for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if dataloader is None:
        dataset = LoadImagesAndLabels(path,
                                      img_size,
                                      batch_size,
                                      rect=True,
                                      single_cls=opt.single_cls)
        batch_size = min(batch_size, len(dataset))
        dataloader = DataLoader(dataset,
                                batch_size=batch_size,
                                num_workers=min([
                                    os.cpu_count(),
                                    batch_size if batch_size > 1 else 0, 8
                                ]),
                                pin_memory=True,
                                collate_fn=dataset.collate_fn)

    seen = 0
    model.eval()

    _ = model(torch.zeros(
        (1, 3, img_size, img_size),
        device=device)) if device.type != 'cpu' else None  # run once
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R',
                                 '[email protected]', 'F1')
    p, r, f1, mp, mr, map, mf1, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (imgs, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=s)):
        imgs = imgs.to(
            device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = imgs.shape  # batch size, channels, height, width
        whwh = torch.Tensor([width, height, width, height]).to(device)

        # Plot images with bounding boxes
        f = 'test_batch%g.jpg' % batch_i  # filename
        if batch_i < 1 and not os.path.exists(f):
            plot_images(images=imgs, targets=targets, paths=paths, fname=f)

        # Disable gradients
        with torch.no_grad():
            # Run model
            t = torch_utils.time_synchronized()
            inf_out, train_out = model(imgs)  # inference and training outputs
            t0 += torch_utils.time_synchronized() - t

            # Compute loss
            if hasattr(model, 'hyp'):  # if model has loss hyperparameters
                loss += compute_loss(train_out, targets,
                                     model)[1][:3]  # GIoU, obj, cls

            # Run NMS
            t = torch_utils.time_synchronized()
            output = non_max_suppression(inf_out,
                                         conf_thres=conf_thres,
                                         iou_thres=iou_thres)  # nms
            t1 += torch_utils.time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            seen += 1

            if pred is None:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Append to text file
            # with open('test.txt', 'a') as file:
            #    [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]

            # Clip boxes to image bounds
            clip_coords(pred, (height, width))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(Path(paths[si]).stem.split('_')[-1])
                box = pred[:, :4].clone()  # xyxy
                scale_coords(imgs[si].shape[1:], box, shapes[si][0],
                             shapes[si][1])  # to original shape
                box = xyxy2xywh(box)  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({
                        'image_id': image_id,
                        'category_id': coco91class[int(p[5])],
                        'bbox': [round(x, 3) for x in b],
                        'score': round(p[4], 5)
                    })

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0],
                                  niou,
                                  dtype=torch.bool,
                                  device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5]) * whwh

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero().view(
                        -1)  # prediction indices
                    pi = (cls == pred[:,
                                      5]).nonzero().view(-1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(pred[pi, :4], tbox[ti]).max(
                            1)  # best ious, indices

                        # Append detections
                        for j in (ious > iouv[0]).nonzero():
                            d = ti[i[j]]  # detected target
                            if d not in detected:
                                detected.append(d)
                                correct[
                                    pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(
                                        detected
                                ) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append(
                (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats):
        p, r, ap, f1, ap_class = ap_per_class(*stats)
        if niou > 1:
            p, r, ap, f1 = p[:, 0], r[:, 0], ap.mean(
                1), ap[:, 0]  # [P, R, [email protected]:0.95, [email protected]]
        mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%10.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i]))

    # Print speeds
    if verbose or save_json:
        t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (
            img_size, img_size, batch_size)  # tuple
        print(
            'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g'
            % t)

    maps = np.zeros(nc) + map
    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (
        img_size, img_size, batch_size)  # tuple
    # Save JSON
    if save_json and map and len(jdict):
        print('\nCOCO mAP with pycocotools...')
        imgIds = [
            int(Path(x).stem.split('_')[-1])
            for x in dataloader.dataset.img_files
        ]
        with open('results.json', 'w') as file:
            json.dump(jdict, file)

        try:
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval
        except:
            print(
                'WARNING: missing pycocotools package, can not compute official COCO mAP. See requirements.txt.'
            )

        # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
        cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')
                      [0])  # initialize COCO ground truth api
        cocoDt = cocoGt.loadRes('results.json')  # initialize COCO pred api

        cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
        cocoEval.params.imgIds = imgIds  # [:32]  # only evaluate these images
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
        map, map50 = cocoEval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        return (mp, mr, map50, map,
                *(loss.cpu() / len(dataloader)).tolist()), maps, t

    # Return results
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
        print("class {} ap is {}".format(i, ap[i]))
    # print("map is", map)
    return (mp, mr, map, mf1,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t