def train(args, snapshot_path): base_lr = args.base_lr train_data_path = args.root_path batch_size = args.batch_size max_iterations = args.max_iterations net = unet_3D(n_classes=2, in_channels=1) model = net.cuda() db_train = BraTS2019(base_dir=train_data_path, split='train', num=None, transform=transforms.Compose([ RandomRotFlip(), RandomCrop(args.patch_size), ToTensor(), ])) def worker_init_fn(worker_id): random.seed(args.seed + worker_id) labeled_idxs = list(range(0, args.labeled_num)) unlabeled_idxs = list(range(args.labeled_num, 250)) batch_sampler = TwoStreamBatchSampler( labeled_idxs, unlabeled_idxs, batch_size, batch_size-args.labeled_bs) trainloader = DataLoader(db_train, batch_sampler=batch_sampler, num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn) model.train() optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001) ce_loss = CrossEntropyLoss() dice_loss = losses.DiceLoss(2) writer = SummaryWriter(snapshot_path + '/log') logging.info("{} iterations per epoch".format(len(trainloader))) iter_num = 0 max_epoch = max_iterations // len(trainloader) + 1 best_performance = 0.0 iterator = tqdm(range(max_epoch), ncols=70) for epoch_num in iterator: for i_batch, sampled_batch in enumerate(trainloader): volume_batch, label_batch = sampled_batch['image'], sampled_batch['label'] volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda() unlabeled_volume_batch = volume_batch[args.labeled_bs:] outputs = model(volume_batch) outputs_soft = torch.softmax(outputs, dim=1) loss_ce = ce_loss(outputs[:args.labeled_bs], label_batch[:args.labeled_bs][:]) loss_dice = dice_loss( outputs_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1)) supervised_loss = 0.5 * (loss_dice + loss_ce) consistency_weight = get_current_consistency_weight(iter_num//150) consistency_loss = losses.entropy_loss(outputs_soft, C=2) loss = supervised_loss + consistency_weight * consistency_loss optimizer.zero_grad() loss.backward() optimizer.step() lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9 for param_group in optimizer.param_groups: param_group['lr'] = lr_ iter_num = iter_num + 1 writer.add_scalar('info/lr', lr_, iter_num) writer.add_scalar('info/total_loss', loss, iter_num) writer.add_scalar('info/loss_ce', loss_ce, iter_num) writer.add_scalar('info/loss_dice', loss_dice, iter_num) writer.add_scalar('info/consistency_loss', consistency_loss, iter_num) writer.add_scalar('info/consistency_weight', consistency_weight, iter_num) logging.info( 'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' % (iter_num, loss.item(), loss_ce.item(), loss_dice.item())) if iter_num % 20 == 0: image = volume_batch[0, 0:1, :, :, 20:61:10].permute( 3, 0, 1, 2).repeat(1, 3, 1, 1) grid_image = make_grid(image, 5, normalize=True) writer.add_image('train/Image', grid_image, iter_num) image = outputs_soft[0, 1:2, :, :, 20:61:10].permute( 3, 0, 1, 2).repeat(1, 3, 1, 1) grid_image = make_grid(image, 5, normalize=False) writer.add_image('train/Predicted_label', grid_image, iter_num) image = label_batch[0, :, :, 20:61:10].unsqueeze( 0).permute(3, 0, 1, 2).repeat(1, 3, 1, 1) grid_image = make_grid(image, 5, normalize=False) writer.add_image('train/Groundtruth_label', grid_image, iter_num) if iter_num > 0 and iter_num % 200 == 0: model.eval() avg_metric = test_all_case( model, args.root_path, test_list="val.txt", num_classes=2, patch_size=args.patch_size, stride_xy=64, stride_z=64) if avg_metric[:, 0].mean() > best_performance: best_performance = avg_metric[:, 0].mean() save_mode_path = os.path.join(snapshot_path, 'iter_{}_dice_{}.pth'.format( iter_num, round(best_performance, 4))) save_best = os.path.join(snapshot_path, '{}_best_model.pth'.format(args.model)) torch.save(model.state_dict(), save_mode_path) torch.save(model.state_dict(), save_best) writer.add_scalar('info/val_dice_score', avg_metric[0, 0], iter_num) writer.add_scalar('info/val_hd95', avg_metric[0, 1], iter_num) logging.info( 'iteration %d : dice_score : %f hd95 : %f' % (iter_num, avg_metric[0, 0].mean(), avg_metric[0, 1].mean())) model.train() if iter_num % 3000 == 0: save_mode_path = os.path.join( snapshot_path, 'iter_' + str(iter_num) + '.pth') torch.save(model.state_dict(), save_mode_path) logging.info("save model to {}".format(save_mode_path)) if iter_num >= max_iterations: break if iter_num >= max_iterations: iterator.close() break writer.close() return "Training Finished!"
def train(args, snapshot_path): base_lr = args.base_lr num_classes = args.num_classes batch_size = args.batch_size max_iterations = args.max_iterations def worker_init_fn(worker_id): random.seed(args.seed + worker_id) model = net_factory(net_type=args.model, in_chns=1, class_num=num_classes) db_train = BaseDataSets(base_dir=args.root_path, split="train", num=None, transform=transforms.Compose( [RandomGenerator(args.patch_size)])) total_slices = len(db_train) labeled_slice = patients_to_slices(args.root_path, args.labeled_num) print("Total silices is: {}, labeled slices is: {}".format( total_slices, labeled_slice)) labeled_idxs = list(range(0, labeled_slice)) unlabeled_idxs = list(range(labeled_slice, total_slices)) batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs, batch_size, batch_size - args.labeled_bs) trainloader = DataLoader(db_train, batch_sampler=batch_sampler, num_workers=16, pin_memory=True, worker_init_fn=worker_init_fn) db_val = BaseDataSets(base_dir=args.root_path, split="val") valloader = DataLoader(db_val, batch_size=1, shuffle=False, num_workers=1) model.train() optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001) ce_loss = CrossEntropyLoss() dice_loss = losses.DiceLoss(num_classes) writer = SummaryWriter(snapshot_path + '/log') logging.info("{} iterations per epoch".format(len(trainloader))) iter_num = 0 max_epoch = max_iterations // len(trainloader) + 1 best_performance = 0.0 iterator = tqdm(range(max_epoch), ncols=70) for epoch_num in iterator: for i_batch, sampled_batch in enumerate(trainloader): volume_batch, label_batch = sampled_batch['image'], sampled_batch[ 'label'] volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda() unlabeled_volume_batch = volume_batch[args.labeled_bs:] outputs = model(volume_batch) outputs_soft = torch.softmax(outputs, dim=1) loss_ce = ce_loss(outputs[:args.labeled_bs], label_batch[:][:args.labeled_bs].long()) loss_dice = dice_loss(outputs_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1)) supervised_loss = 0.5 * (loss_dice + loss_ce) consistency_weight = get_current_consistency_weight(iter_num // 150) consistency_loss = losses.entropy_loss(outputs_soft, C=4) loss = supervised_loss + consistency_weight * consistency_loss optimizer.zero_grad() loss.backward() optimizer.step() lr_ = base_lr * (1.0 - iter_num / max_iterations)**0.9 for param_group in optimizer.param_groups: param_group['lr'] = lr_ iter_num = iter_num + 1 writer.add_scalar('info/lr', lr_, iter_num) writer.add_scalar('info/total_loss', loss, iter_num) writer.add_scalar('info/loss_ce', loss_ce, iter_num) writer.add_scalar('info/loss_dice', loss_dice, iter_num) writer.add_scalar('info/consistency_loss', consistency_loss, iter_num) writer.add_scalar('info/consistency_weight', consistency_weight, iter_num) logging.info( 'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' % (iter_num, loss.item(), loss_ce.item(), loss_dice.item())) if iter_num % 20 == 0: image = volume_batch[1, 0:1, :, :] writer.add_image('train/Image', image, iter_num) outputs = torch.argmax(torch.softmax(outputs, dim=1), dim=1, keepdim=True) writer.add_image('train/Prediction', outputs[1, ...] * 50, iter_num) labs = label_batch[1, ...].unsqueeze(0) * 50 writer.add_image('train/GroundTruth', labs, iter_num) if iter_num > 0 and iter_num % 200 == 0: model.eval() metric_list = 0.0 for i_batch, sampled_batch in enumerate(valloader): metric_i = test_single_volume(sampled_batch["image"], sampled_batch["label"], model, classes=num_classes) metric_list += np.array(metric_i) metric_list = metric_list / len(db_val) for class_i in range(num_classes - 1): writer.add_scalar('info/val_{}_dice'.format(class_i + 1), metric_list[class_i, 0], iter_num) writer.add_scalar('info/val_{}_hd95'.format(class_i + 1), metric_list[class_i, 1], iter_num) performance = np.mean(metric_list, axis=0)[0] mean_hd95 = np.mean(metric_list, axis=0)[1] writer.add_scalar('info/val_mean_dice', performance, iter_num) writer.add_scalar('info/val_mean_hd95', mean_hd95, iter_num) if performance > best_performance: best_performance = performance save_mode_path = os.path.join( snapshot_path, 'iter_{}_dice_{}.pth'.format( iter_num, round(best_performance, 4))) save_best = os.path.join( snapshot_path, '{}_best_model.pth'.format(args.model)) torch.save(model.state_dict(), save_mode_path) torch.save(model.state_dict(), save_best) logging.info('iteration %d : mean_dice : %f mean_hd95 : %f' % (iter_num, performance, mean_hd95)) model.train() if iter_num % 3000 == 0: save_mode_path = os.path.join(snapshot_path, 'iter_' + str(iter_num) + '.pth') torch.save(model.state_dict(), save_mode_path) logging.info("save model to {}".format(save_mode_path)) if iter_num >= max_iterations: break if iter_num >= max_iterations: iterator.close() break writer.close() return "Training Finished!"
image_a_adapt = FDA_source_to_target(image_a, image_b, 0.02).cuda() image_b_adapt = FDA_source_to_target(image_b, image_a, 0.02).cuda() optimiser.zero_grad() a1, a2, a3, a4, a5 = net.downsample(image_a) pred_seg_a = net.upsample(a1, a2, a3, a4, a5) # pred_seg_a = net(image_a) loss_seg_a = criterion(pred_seg_a, target_a) res2 = net.downsample(image_b) pred_seg_b = net.upsample(*res2) ent_a = entropy_loss(pred_seg_a) ent_b = entropy_loss(pred_seg_b) loss = loss_seg_a + LAMBDA_ENT * (ent_a + ent_b) loss.backward() optimiser.step() # dice_score = dice_coeff(torch.round(pred), l).item() # epoch_train_loss_rec.append(loss_recon.item()) epoch_train_loss_seg.append(loss_seg_a.item()) # mean_loss_rec = np.mean(epoch_train_loss_rec) mean_loss_seg = np.mean(epoch_train_loss_seg) # print('Train A - avg seg:{}'.format(np.mean(epoch_train_loss_seg)))