def model_loss(target_y, predicted_y): return losses.esr_loss(target_y, predicted_y, losses.pre_emphasis_filter) + losses.dc_loss( target_y, predicted_y)
# %% fs = 1.0 / IN_train[idx, 0, -1] freqs, pred_fft = plot_fft(predictions, fs) freqs, target_fft = plot_fft(OUT_train[idx].flatten(), fs) # Plot the predictions along with to the test data plt.clf() plt.title('Training data predicted vs actual values') plt.semilogx(freqs, target_fft, 'b', label='Actual') plt.semilogx(freqs, pred_fft, 'r--', label='Predicted') plt.legend() plt.xlim(50, 20000) plt.ylim(-5) plt.xlabel('Frequency [Hz]') plt.ylabel('Magnitude [dB]') # %% start = 5500 end = 7000 plt.plot(clean_data[idx][start:end], hyst_data[idx][start:end]) plt.plot(clean_data[idx][start:end], predictions[start:end], '--') # %% print(losses.esr_loss(OUT_train, model.model.predict(IN_train))) # %% model.save_model(model_file) model.save_history(model_hist) # %%