Example #1
0
def compute_test_set_aps(eval_model, cfg):
    num_test_images = cfg["DATA"].NUM_TEST_IMAGES
    classes = cfg["DATA"].CLASSES
    image_input = input_variable(shape=(cfg.NUM_CHANNELS, cfg.IMAGE_HEIGHT,
                                        cfg.IMAGE_WIDTH),
                                 dynamic_axes=[Axis.default_batch_axis()],
                                 name=cfg["MODEL"].FEATURE_NODE_NAME)
    roi_input = input_variable((cfg.INPUT_ROIS_PER_IMAGE, 5),
                               dynamic_axes=[Axis.default_batch_axis()])
    dims_input = input_variable((6), dynamic_axes=[Axis.default_batch_axis()])
    frcn_eval = eval_model(image_input, dims_input)

    # Create the minibatch source
    minibatch_source = ObjectDetectionMinibatchSource(
        cfg["DATA"].TEST_MAP_FILE,
        cfg["DATA"].TEST_ROI_FILE,
        max_annotations_per_image=cfg.INPUT_ROIS_PER_IMAGE,
        pad_width=cfg.IMAGE_WIDTH,
        pad_height=cfg.IMAGE_HEIGHT,
        pad_value=cfg["MODEL"].IMG_PAD_COLOR,
        randomize=False,
        use_flipping=False,
        max_images=cfg["DATA"].NUM_TEST_IMAGES,
        num_classes=cfg["DATA"].NUM_CLASSES,
        proposal_provider=None)

    # define mapping from reader streams to network inputs
    input_map = {
        minibatch_source.image_si: image_input,
        minibatch_source.roi_si: roi_input,
        minibatch_source.dims_si: dims_input
    }

    # all detections are collected into:
    #    all_boxes[cls][image] = N x 5 array of detections in (x1, y1, x2, y2, score)
    all_boxes = [[[] for _ in range(num_test_images)]
                 for _ in range(cfg["DATA"].NUM_CLASSES)]

    # evaluate test images and write netwrok output to file
    print("Evaluating Faster R-CNN model for %s images." % num_test_images)
    all_gt_infos = {key: [] for key in classes}
    for img_i in range(0, num_test_images):
        mb_data = minibatch_source.next_minibatch(1, input_map=input_map)

        gt_row = mb_data[roi_input].asarray()
        gt_row = gt_row.reshape((cfg.INPUT_ROIS_PER_IMAGE, 5))
        all_gt_boxes = gt_row[np.where(gt_row[:, -1] > 0)]

        for cls_index, cls_name in enumerate(classes):
            if cls_index == 0: continue
            cls_gt_boxes = all_gt_boxes[np.where(
                all_gt_boxes[:, -1] == cls_index)]
            all_gt_infos[cls_name].append({
                'bbox':
                np.array(cls_gt_boxes),
                'difficult': [False] * len(cls_gt_boxes),
                'det': [False] * len(cls_gt_boxes)
            })

        output = frcn_eval.eval({
            image_input: mb_data[image_input],
            dims_input: mb_data[dims_input]
        })
        out_dict = dict([(k.name, k) for k in output])
        out_cls_pred = output[out_dict['cls_pred']][0]
        out_rpn_rois = output[out_dict['rpn_rois']][0]
        out_bbox_regr = output[out_dict['bbox_regr']][0]

        labels = out_cls_pred.argmax(axis=1)
        scores = out_cls_pred.max(axis=1)
        regressed_rois = regress_rois(out_rpn_rois, out_bbox_regr, labels,
                                      mb_data[dims_input].asarray())

        labels.shape = labels.shape + (1, )
        scores.shape = scores.shape + (1, )
        coords_score_label = np.hstack((regressed_rois, scores, labels))

        #   shape of all_boxes: e.g. 21 classes x 4952 images x 58 rois x 5 coords+score
        for cls_j in range(1, cfg["DATA"].NUM_CLASSES):
            coords_score_label_for_cls = coords_score_label[np.where(
                coords_score_label[:, -1] == cls_j)]
            all_boxes[cls_j][
                img_i] = coords_score_label_for_cls[:, :-1].astype(np.float32,
                                                                   copy=False)

        if (img_i + 1) % 100 == 0:
            print("Processed {} samples".format(img_i + 1))

    # calculate mAP
    aps = evaluate_detections(all_boxes,
                              all_gt_infos,
                              classes,
                              use_gpu_nms=cfg.USE_GPU_NMS,
                              device_id=cfg.GPU_ID,
                              nms_threshold=cfg.RESULTS_NMS_THRESHOLD,
                              conf_threshold=cfg.RESULTS_NMS_CONF_THRESHOLD)

    return aps
Example #2
0
def compute_test_set_aps(eval_model, cfg):
    num_test_images = cfg["DATA"].NUM_TEST_IMAGES
    classes = cfg["DATA"].CLASSES
    image_input = input_variable(shape=(cfg.NUM_CHANNELS, cfg.IMAGE_HEIGHT, cfg.IMAGE_WIDTH),
                                 dynamic_axes=[Axis.default_batch_axis()],
                                 name=cfg["MODEL"].FEATURE_NODE_NAME)
    roi_input = input_variable((cfg.INPUT_ROIS_PER_IMAGE, 5), dynamic_axes=[Axis.default_batch_axis()])
    roi_proposals = input_variable((cfg.NUM_ROI_PROPOSALS, 4), dynamic_axes=[Axis.default_batch_axis()], name="roi_proposals")
    dims_input = input_variable((6), dynamic_axes=[Axis.default_batch_axis()])
    frcn_eval = eval_model(image_input, roi_proposals)

    # Create the minibatch source
    if cfg.USE_PRECOMPUTED_PROPOSALS:
        try:
            cfg["DATA"].TEST_PRECOMPUTED_PROPOSALS_FILE = os.path.join(cfg["DATA"].MAP_FILE_PATH, cfg["DATA"].TEST_PRECOMPUTED_PROPOSALS_FILE)
            proposal_provider = ProposalProvider.fromfile(cfg["DATA"].TEST_PRECOMPUTED_PROPOSALS_FILE, cfg.NUM_ROI_PROPOSALS)
        except:
            print("To use precomputed proposals please specify the following parameters in your configuration:\n"
                  "__C.DATA.TRAIN_PRECOMPUTED_PROPOSALS_FILE\n"
                  "__C.DATA.TEST_PRECOMPUTED_PROPOSALS_FILE")
            exit(-1)
    else:
        proposal_provider = ProposalProvider.fromconfig(cfg)

    minibatch_source = ObjectDetectionMinibatchSource(
        cfg["DATA"].TEST_MAP_FILE,
        cfg["DATA"].TEST_ROI_FILE,
        max_annotations_per_image=cfg.INPUT_ROIS_PER_IMAGE,
        pad_width=cfg.IMAGE_WIDTH,
        pad_height=cfg.IMAGE_HEIGHT,
        pad_value=cfg["MODEL"].IMG_PAD_COLOR,
        randomize=False, use_flipping=False,
        max_images=cfg["DATA"].NUM_TEST_IMAGES,
        num_classes=cfg["DATA"].NUM_CLASSES,
        proposal_provider=proposal_provider,
        provide_targets=False)

    # define mapping from reader streams to network inputs
    input_map = {
        minibatch_source.image_si: image_input,
        minibatch_source.roi_si: roi_input,
        minibatch_source.proposals_si: roi_proposals,
        minibatch_source.dims_si: dims_input
    }

    # all detections are collected into:
    #    all_boxes[cls][image] = N x 5 array of detections in (x1, y1, x2, y2, score)
    all_boxes = [[[] for _ in range(num_test_images)] for _ in range(cfg["DATA"].NUM_CLASSES)]

    # evaluate test images and write netwrok output to file
    print("Evaluating Fast R-CNN model for %s images." % num_test_images)
    all_gt_infos = {key: [] for key in classes}
    for img_i in range(0, num_test_images):
        mb_data = minibatch_source.next_minibatch(1, input_map=input_map)

        gt_row = mb_data[roi_input].asarray()
        gt_row = gt_row.reshape((cfg.INPUT_ROIS_PER_IMAGE, 5))
        all_gt_boxes = gt_row[np.where(gt_row[:,-1] > 0)]

        for cls_index, cls_name in enumerate(classes):
            if cls_index == 0: continue
            cls_gt_boxes = all_gt_boxes[np.where(all_gt_boxes[:,-1] == cls_index)]
            all_gt_infos[cls_name].append({'bbox': np.array(cls_gt_boxes),
                                           'difficult': [False] * len(cls_gt_boxes),
                                           'det': [False] * len(cls_gt_boxes)})

        output = frcn_eval.eval({image_input: mb_data[image_input], roi_proposals: mb_data[roi_proposals]})
        out_dict = dict([(k.name, k) for k in output])
        out_cls_pred = output[out_dict['cls_pred']][0]
        out_rpn_rois = mb_data[roi_proposals].data.asarray()
        out_bbox_regr = output[out_dict['bbox_regr']][0]

        labels = out_cls_pred.argmax(axis=1)
        scores = out_cls_pred.max(axis=1)
        regressed_rois = regress_rois(out_rpn_rois, out_bbox_regr, labels, mb_data[dims_input].asarray())

        labels.shape = labels.shape + (1,)
        scores.shape = scores.shape + (1,)
        coords_score_label = np.hstack((regressed_rois, scores, labels))

        #   shape of all_boxes: e.g. 21 classes x 4952 images x 58 rois x 5 coords+score
        for cls_j in range(1, cfg["DATA"].NUM_CLASSES):
            coords_score_label_for_cls = coords_score_label[np.where(coords_score_label[:,-1] == cls_j)]
            all_boxes[cls_j][img_i] = coords_score_label_for_cls[:,:-1].astype(np.float32, copy=False)

        if (img_i+1) % 100 == 0:
            print("Processed {} samples".format(img_i+1))

    # calculate mAP
    aps = evaluate_detections(all_boxes, all_gt_infos, classes,
                              use_gpu_nms = cfg.USE_GPU_NMS,
                              device_id = cfg.GPU_ID,
                              nms_threshold=cfg.RESULTS_NMS_THRESHOLD,
                              conf_threshold = cfg.RESULTS_NMS_CONF_THRESHOLD)

    return aps