Example #1
0
    def evaluate(self,
                 data_loaders=None,
                 logger=None,
                 gen_images=False,
                 score_acc=None):
        assert isinstance(score_acc, ScoreAccumulator)
        for loader in data_loaders:
            img_obj = loader.dataset.image_objects[0]
            x, y = img_obj.working_arr.shape[0], img_obj.working_arr.shape[1]
            predicted_img = torch.FloatTensor(x, y).fill_(0).to(self.device)

            for i, data in enumerate(loader, 1):
                inputs, labels = data['inputs'].to(
                    self.device).float(), data['labels'].to(
                        self.device).float()
                clip_ix = data['clip_ix'].to(self.device).int()

                outputs = F.softmax(self.model(inputs), 1)
                _, predicted = torch.max(outputs, 1)
                predicted_map = outputs[:, 1, :, :]

                for j in range(predicted_map.shape[0]):
                    p, q, r, s = clip_ix[j]
                    predicted_img[p:q, r:s] = predicted[j]

                print('Batch: ', i, end='\r')

            img_score = ScoreAccumulator()
            if gen_images:  #### Test mode
                predicted_img = predicted_img.cpu().numpy() * 255
                predicted_img[img_obj.extra['fill_in'] == 1] = 255

                img_score.reset().add_array(predicted_img,
                                            img_obj.ground_truth)
                ### Only save scores for test images############################

                self.conf['acc'].accumulate(img_score)  # Global score
                prf1a = img_score.get_prfa()
                print(img_obj.file_name, ' PRF1A', prf1a)
                self.flush(
                    logger,
                    ','.join(str(x) for x in [img_obj.file_name] + prf1a))
                #################################################################

                IMG.fromarray(np.array(predicted_img, dtype=np.uint8)).save(
                    os.path.join(self.log_dir,
                                 img_obj.file_name.split('.')[0] + '.png'))
            else:  #### Validation mode
                img_score.reset().add_tensor(
                    predicted_img,
                    torch.FloatTensor(img_obj.extra['gt_mid']).to(self.device))
                score_acc.accumulate(img_score)
                prf1a = img_score.get_prfa()
                print(img_obj.file_name, ' PRF1A', prf1a)
                self.flush(
                    logger,
                    ','.join(str(x) for x in [img_obj.file_name] + prf1a))
Example #2
0
    def epoch_ce_loss(self, **kw):
        """
        One epoch implementation of binary cross-entropy loss
        :param kw:
        :return:
        """
        running_loss = 0.0
        score_acc = ScoreAccumulator() if self.model.training else kw.get('score_acc')
        assert isinstance(score_acc, ScoreAccumulator)

        for i, data in enumerate(kw['data_loader'], 1):
            inputs, labels = data['inputs'].to(self.device).float(), data['labels'].to(self.device).long()

            if self.model.training:
                self.optimizer.zero_grad()

            outputs = F.log_softmax(self.model(inputs), 1)
            _, predicted = torch.max(outputs, 1)

            loss = F.nll_loss(outputs, labels, weight=torch.FloatTensor(self.dparm(self.conf)).to(self.device))

            if self.model.training:
                loss.backward()
                self.optimizer.step()

            current_loss = loss.item()
            running_loss += current_loss

            if self.model.training:
                score_acc.reset()

            p, r, f1, a = score_acc.add_tensor(predicted, labels).get_prfa()

            if i % self.log_frequency == 0:
                print('Epochs[%d/%d] Batch[%d/%d] loss:%.5f pre:%.3f rec:%.3f f1:%.3f acc:%.3f' %
                      (
                          kw['epoch'], self.epochs, i, kw['data_loader'].__len__(),
                          running_loss / self.log_frequency, p, r, f1,
                          a))
                running_loss = 0.0
            self.flush(kw['logger'],
                       ','.join(str(x) for x in [0, kw['epoch'], i, p, r, f1, a, current_loss]))
Example #3
0
    def epoch_dice_loss(self, **kw):

        score_acc = ScoreAccumulator() if self.model.training else kw.get('score_acc')
        assert isinstance(score_acc, ScoreAccumulator)

        running_loss = 0.0
        for i, data in enumerate(kw['data_loader'], 1):
            inputs, labels = data['inputs'].to(self.device).float(), data['labels'].to(self.device).long()

            if self.model.training:
                self.optimizer.zero_grad()

            outputs = F.softmax(self.model(inputs), 1)
            _, predicted = torch.max(outputs, 1)

            loss = dice_loss(outputs[:, 1, :, :], labels, beta=rd.choice(np.arange(1, 2, 0.1).tolist()))
            if self.model.training:
                loss.backward()
                self.optimizer.step()

            current_loss = loss.item()
            running_loss += current_loss

            if self.model.training:
                score_acc.reset()
            p, r, f1, a = score_acc.add_tensor(predicted, labels).get_prfa()

            if i % self.log_frequency == 0:
                print('Epochs[%d/%d] Batch[%d/%d] loss:%.5f pre:%.3f rec:%.3f f1:%.3f acc:%.3f' %
                      (
                          kw['epoch'], self.epochs, i, kw['data_loader'].__len__(), running_loss / self.log_frequency,
                          p, r, f1,
                          a))
                running_loss = 0.0

            self.flush(kw['logger'], ','.join(str(x) for x in [0, kw['epoch'], i, p, r, f1, a, current_loss]))
Example #4
0
    def epoch_dice_loss(self, **kw):
        score_acc = ScoreAccumulator()
        running_loss = 0.0
        for i, data in enumerate(kw['data_loader'], 1):
            inputs, labels = data['inputs'].to(
                self.device).float(), data['labels'].to(self.device).long()
            # weights = data['weights'].to(self.device)

            self.optimizer.zero_grad()
            outputs = self.model(inputs)
            _, predicted = torch.max(outputs, 1)

            # Balancing imbalanced class as per computed weights from the dataset
            # w = torch.FloatTensor(2).random_(1, 100).to(self.device)
            # wd = torch.FloatTensor(*labels.shape).uniform_(0.1, 2).to(self.device)

            loss = dice_loss(outputs[:, 1, :, :],
                             labels,
                             beta=rd.choice(np.arange(1, 2, 0.1).tolist()))
            loss.backward()
            self.optimizer.step()

            current_loss = loss.item()
            running_loss += current_loss
            p, r, f1, a = score_acc.reset().add_tensor(predicted,
                                                       labels).get_prfa()
            if i % self.log_frequency == 0:
                print(
                    'Epochs[%d/%d] Batch[%d/%d] loss:%.5f pre:%.3f rec:%.3f f1:%.3f acc:%.3f'
                    %
                    (kw['epoch'], self.epochs, i, kw['data_loader'].__len__(),
                     running_loss / self.log_frequency, p, r, f1, a))
                running_loss = 0.0

            self.flush(
                self.train_logger, ','.join(
                    str(x)
                    for x in [0, kw['epoch'], i, p, r, f1, a, current_loss]))