def evaluation(dev_query_embedding2id,
                   passage_embedding2id,
                   dev_I,
                   dev_D,
                   trec_prefix="real-dev_query_",
                   test_set="trec2019",
                   split_idx=-1,
                   d2q_eval=False,
                   d2q_qrels=None):
        if d2q_eval:
            qrels = d2q_qrels
        else:
            if args.data_type == 0:
                if not d2q_eval:
                    if test_set == "marcodev":
                        qrels = "../data/raw_data/msmarco-docdev-qrels.tsv"
                    elif test_set == "trec2019":
                        qrels = "../data/raw_data/2019qrels-docs.txt"
            elif args.data_type == 1:
                if test_set == "marcodev":
                    qrels = "../data/raw_data/qrels.dev.small.tsv"
            else:
                logging.error("wrong data type")
                exit()
        trec_path = os.path.join(args.output_dir,
                                 trec_prefix + str(checkpoint_step) + ".trec")
        save_trec_file(dev_query_embedding2id,
                       passage_embedding2id,
                       dev_I,
                       dev_D,
                       trec_save_path=trec_path,
                       topN=200)
        convert_trec_to_MARCO_id(data_type=args.data_type,
                                 test_set=test_set,
                                 processed_data_dir=args.data_dir,
                                 trec_path=trec_path,
                                 d2q_reversed_trec_file=d2q_eval)

        trec_path = trec_path.replace(".trec", ".formatted.trec")
        met = Metric()
        if split_idx >= 0:
            split_file_path = qrels + f"{args.dev_split_num}_fold.split_dict"
            with open(split_file_path, 'rb') as f:
                split = pickle.load(f)
        else:
            split = None

        ndcg10 = met.get_metric(qrels, trec_path, 'ndcg_cut_10', split,
                                split_idx)
        mrr10 = met.get_mrr(qrels, trec_path, 'mrr_cut_10', split, split_idx)
        mrr100 = met.get_mrr(qrels, trec_path, 'mrr_cut_100', split, split_idx)

        logging.info(
            f" evaluation for {test_set}, trec_file {trec_path}, split_idx {split_idx} \
            ndcg_cut_10 : {ndcg10}, \
            mrr_cut_10 : {mrr10}, \
            mrr_cut_100 : {mrr100}")

        return ndcg10
Example #2
0
def diff_record_or_warning(local_block_num, remote_block_num, other_api):
    diff = remote_block_num - local_block_num
    msg = ("local:%s,remote(%s):%s,diff:%s" %
           (local_block_num, other_api, remote_block_num, diff))
    logger.info('%s, %s', hostname, msg)
    Metric.metric(Metric.height_diff, diff, version=local_server_version)
    if abs(diff) >= max_height_diff:
        log_and_notify(hostname, msg)
Example #3
0
 def extract_incoming_block(self, message):
     pattern = '.*?#(?P<block_header_num>\d+)\s+@\s+(?P<timestamp>{})\s+?signed by\s+?(?P<producer_name>.+?)\s.*' \
               '\[trxs: (?P<trx_count>\d+), lib: (?P<last_irreversible_block_num>\d+), conf: (?P<confirm_count>\d+), latency: (?P<latency>.*) ms\]' \
         .format(timestamp_pattern)
     if not re.match(pattern, message):
         return
     msg_dict = self.extract_dict(pattern, message)
     if msg_dict is None:
         return
     producer_name = msg_dict['producer_name']
     trx_count = msg_dict['trx_count']
     confirm_count = msg_dict['confirm_count']
     latency = msg_dict['latency']
     logger.info('%s %s %s %s', producer_name, trx_count, confirm_count, latency)
     Metric.metric(Metric.latency, latency, producer_name)
     Metric.metric(Metric.trxs, trx_count, producer_name)
Example #4
0
def main(opt):
    if opt.image_dir:
        stsimM_vectors, stsimM_class = [], {}
        for root, dirs, files in os.walk(opt.image_dir):
            for base_texture in range(0, 10):
                for distortion in range(0, 10):
                    img = f"{base_texture}_{distortion}.tiff"
                    vector = list(Metric().STSIM_M(
                        cv2.imread(os.path.join(root, img),
                                   cv2.IMREAD_GRAYSCALE)))
                    stsimM_vectors.append([int(base_texture + distortion)] +
                                          vector)
                    if int(base_texture) in stsimM_class:
                        stsimM_class[int(base_texture)].append(vector)
                    else:
                        stsimM_class[int(base_texture)] = [vector]

    if opt.save_features:
        np.save(open(opt.save_features, 'rb'), stsimM_vectors)

    if opt.load_distance_matrix:
        dist_matrix = np.load(open(opt.load_distance_matrix, 'rb'))
    elif opt.scope == 'global':
        if opt.distance_metric == 'var':
            dist_matrix = np.diag(np.var(stsimM_vectors[:, 1:], axis=0))
        elif opt.distance_metric == 'cov':
            import pdb
            pdb.set_trace()
            dist_matrix = np.cov(np.array(stsimM_vectors)[:, 1:], rowvar=False)
    elif opt.scope == 'intraclass':
        if opt.distance_metric == 'var':
            dist_matrix = np.mean([
                np.diag(np.var(distortions), axis=0)
                for distortions in stsimM_class.values()
            ],
                                  axis=0)
        elif opt.distance_metric == 'cov':
            dist_matrix = np.mean([
                np.cov(distortions, rowvar=False)
                for distortions in stsimM_class.values()
            ],
                                  axis=0)

    if opt.save_distance_matrix:
        np.save(open(opt.save_distance_matrix, 'wb'), dist_matrix)
    dist_matrix = np.linalg.inv(dist_matrix)

    results = []
    for base_texture in range(0, 10):
        texture_sim = [
            mahalanobis(stsimM_class[base_texture][0],
                        stsimM_class[base_texture][distortion], dist_matrix)
            for distortion in range(0, 10)
        ]
        results.append(texture_sim)
    if opt.save_results:
        np.save(open(opt.save_results, 'wb'), np.array(results))

    evaluate(results, opt)
def get_bp_account_info():
    get_global_info()
    get_account_info()
    get_issue_token()
    get_rewards_info()
    Metric.metric(Metric.rank, rank)
    bp = 'bp: %s' % bp_name
    votes = 'votes: %s' % votes2eos(bp_vote_weight)
    rank_info = 'rank: %s' % rank
    vote_rate = 'rate: %s' % (bp_vote_weight / total_vote_weight)
    vote_weight = 'weight: %s' % int(bp_vote_weight)
    all_reward = vote_pay + block_pay
    reward_info = 'reward: %s' % (all_reward)
    claim_info = 'claim: %s' % last_claim_time_str
    un_pay = 'unpay: %s' % un_claim_pay
    if just_get_rewards is None:
        notify(bp, votes, rank_info, vote_rate, vote_weight, reward_info,
               claim_info, un_pay)
    else:
        print(all_reward)
Example #6
0
    def evaluate(self, loader):
        self.model.eval()

        loss, metric = 0, Metric()

        for words, feats, arcs, rels in loader:
            mask = words.ne(self.args.pad_index)
            # ignore the first token of each sentence
            mask[:, 0] = 0
            arc_scores, rel_scores = self.model(words, feats)
            loss += self.get_loss(arc_scores, rel_scores, arcs, rels, mask)
            arc_preds, rel_preds = self.decode(arc_scores, rel_scores, mask)
            # ignore all punctuation if not specified
            if not self.args.punct:
                mask &= words.unsqueeze(-1).ne(self.puncts).all(-1)
            metric(arc_preds, rel_preds, arcs, rels, mask)
        loss /= len(loader)

        return loss, metric
Example #7
0
    def train_epoch(self):
        losses = Metric()
        pixel_loss = Metric()
        feat_loss = Metric()
        discr_loss = Metric()
        len_train = len(self.train_loader)
        pb = tqdm(self.train_loader)

        self.model.train()
        # Make sure the criterion is also set to the correct state
        self.criterion.train()

        for i, (lr, hr) in enumerate(pb):
            # Note that the lr here means low-resolution (images)
            # rather than learning rate
            lr, hr = lr.cuda(), hr.cuda()
            sr = self.model(lr)

            if i % 1 == 0:
                with self.criterion.iqa_loss.learner():
                    # Train the IQA model
                    dl = self.discr_learn(hr, hr, 0.0)  # Good-quality images
                    dl += self.discr_learn(sr.detach(),
                                           hr)  # Bad-quality images
                    dl /= 2
                    discr_loss.update(dl, n=self.batch_size)

            # Train the SR model
            loss, pl, fl = self.criterion(sr, hr)
            self.optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_value_(self.model.parameters(), 0.1)
            self.optimizer.step()

            # Update data
            losses.update(loss.data, n=self.batch_size)
            pixel_loss.update(pl.data, n=self.batch_size)
            feat_loss.update(fl.data, n=self.batch_size)

            # Log for this mini-batch
            desc = "[{}/{}] Loss {loss.val:.4f} ({loss.avg:.4f}) " \
                    "DL {discr.val:.4f} ({discr.avg:.4f}) " \
                    "PL {pixel.val:.4f} ({pixel.avg:.4f}) " \
                    "FL {feat.val:.6f} ({feat.avg:.6f})"\
                .format(i+1, len_train, loss=losses,
                        discr=discr_loss,
                        pixel=pixel_loss, feat=feat_loss)
            pb.set_description(desc)
            self.logger.dump(desc)
Example #8
0
    def validate_epoch(self, epoch=0, store=False):
        self.logger.show_nl("Epoch: [{0}]".format(epoch))
        losses = Metric(self.criterion)
        ssim = ShavedSSIM(self.scale)
        psnr = ShavedPSNR(self.scale)
        len_val = len(self.val_loader)
        pb = tqdm(self.val_loader)
        to_image = self.dataset.tensor_to_image

        self.model.eval()
        self.criterion.eval()

        with torch.no_grad():
            for i, (name, lr, hr) in enumerate(pb):
                if self.phase == 'train' and i >= 16:
                    # Do not validate all images on training phase
                    pb.close()
                    self.logger.warning("validation ends early")
                    break

                lr, hr = lr.unsqueeze(0).cuda(), hr.unsqueeze(0).cuda()

                sr = self.model(lr)

                losses.update(sr, hr)

                lr = to_image(lr.squeeze(0), 'lr')
                sr = to_image(sr.squeeze(0))
                hr = to_image(hr.squeeze(0))

                psnr.update(sr, hr)
                ssim.update(sr, hr)

                pb.set_description(
                    "[{}/{}]"
                    "Loss {loss.val:.4f} ({loss.avg:.4f}) "
                    "PSNR {psnr.val:.4f} ({psnr.avg:.4f}) "
                    "SSIM {ssim.val:.4f} ({ssim.avg:.4f})".format(i + 1,
                                                                  len_val,
                                                                  loss=losses,
                                                                  psnr=psnr,
                                                                  ssim=ssim))

                self.logger.dump("[{}/{}]"
                                 "{} "
                                 "Loss {loss.val:.4f} ({loss.avg:.4f}) "
                                 "PSNR {psnr.val:.4f} ({psnr.avg:.4f}) "
                                 "SSIM {ssim.val:.4f} ({ssim.avg:.4f})".format(
                                     i + 1,
                                     len_val,
                                     name,
                                     loss=losses,
                                     psnr=psnr,
                                     ssim=ssim))

                if store:
                    # lr_name = self.path_ctrl.add_suffix(name, suffix='lr', underline=True)
                    # hr_name = self.path_ctrl.add_suffix(name, suffix='hr', underline=True)
                    sr_name = self.path_ctrl.add_suffix(name,
                                                        suffix='sr',
                                                        underline=True)

                    # self.save_image(lr_name, lr, epoch)
                    # self.save_image(hr_name, hr, epoch)
                    self.save_image(sr_name, sr, epoch)

        return psnr.avg
Example #9
0
    def train_epoch(self):
        losses = Metric()
        pixel_loss = Metric()
        feat_loss = Metric()
        len_train = len(self.train_loader)
        pb = tqdm(self.train_loader)

        self.model.train()
        # Make sure the criterion is also set to the correct state
        self.criterion.train()

        for i, (lr, hr) in enumerate(pb):
            # Note that the lr here means low-resolution (images)
            # rather than learning rate
            lr, hr = lr.cuda(), hr.cuda()
            sr = self.model(lr)

            loss, pl, fl = self.criterion(sr, hr)

            losses.update(loss.data, n=self.batch_size)
            pixel_loss.update(pl.data, n=self.batch_size)
            feat_loss.update(fl.data, n=self.batch_size)

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            desc = "[{}/{}] Loss {loss.val:.4f} ({loss.avg:.4f}) " \
                    "PL {pixel.val:.4f} ({pixel.avg:.4f}) " \
                    "FL {feat.val:.6f} ({feat.avg:.6f})"\
                .format(i+1, len_train, loss=losses,
                    pixel=pixel_loss, feat=feat_loss)
            pb.set_description(desc)
            self.logger.dump(desc)
Example #10
0
 def metric_collect(self, key, value):
     logger.info("%s %s %s" % (self.pid, key, value))
     Metric.metric(key, value)
Example #11
0
def main():
    args = get_config()

    world_size = flow.env.get_world_size()
    if args.train_global_batch_size is None:
        args.train_global_batch_size = args.train_batch_size * world_size
    else:
        assert args.train_global_batch_size % args.train_batch_size == 0

    if args.val_global_batch_size is None:
        args.val_global_batch_size = args.val_batch_size * world_size
    else:
        assert args.val_global_batch_size % args.val_batch_size == 0

    flow.boxing.nccl.set_fusion_threshold_mbytes(args.nccl_fusion_threshold_mb)
    flow.boxing.nccl.set_fusion_max_ops_num(args.nccl_fusion_max_ops)

    if args.with_cuda:
        device = "cuda"
    else:
        device = "cpu"

    print("Device is: ", device)

    print("Creating Dataloader")
    train_data_loader = OfRecordDataLoader(
        ofrecord_dir=args.ofrecord_path,
        mode="train",
        dataset_size=args.train_dataset_size,
        batch_size=args.train_global_batch_size,
        data_part_num=args.train_data_part,
        seq_length=args.seq_length,
        max_predictions_per_seq=args.max_predictions_per_seq,
        consistent=args.use_consistent,
    )

    test_data_loader = OfRecordDataLoader(
        ofrecord_dir=args.ofrecord_path,
        mode="test",
        dataset_size=1024,
        batch_size=args.val_global_batch_size,
        data_part_num=4,
        seq_length=args.seq_length,
        max_predictions_per_seq=args.max_predictions_per_seq,
        consistent=args.use_consistent,
    )

    print("Building BERT Model")
    hidden_size = 64 * args.num_attention_heads
    intermediate_size = 4 * hidden_size
    bert_model = BertForPreTraining(
        args.vocab_size,
        args.seq_length,
        hidden_size,
        args.num_hidden_layers,
        args.num_attention_heads,
        intermediate_size,
        nn.GELU(),
        args.hidden_dropout_prob,
        args.attention_probs_dropout_prob,
        args.max_position_embeddings,
        args.type_vocab_size,
    )

    # Load the same initial parameters with lazy model.
    # from utils.compare_lazy_outputs import load_params_from_lazy
    # load_params_from_lazy(
    #     bert_model.state_dict(),
    #     "../../OneFlow-Benchmark/LanguageModeling/BERT/initial_model",
    # )

    assert id(bert_model.cls.predictions.decoder.weight) == id(
        bert_model.bert.embeddings.word_embeddings.weight
    )

    ns_criterion = nn.CrossEntropyLoss(reduction="mean")
    mlm_criterion = nn.CrossEntropyLoss(reduction="none")

    if args.use_consistent:
        placement = flow.env.all_device_placement("cuda")
        bert_model = bert_model.to_consistent(
            placement=placement, sbp=flow.sbp.broadcast
        )
    else:
        bert_model.to(device)
        ns_criterion.to(device)
        mlm_criterion.to(device)

    optimizer = build_optimizer(
        args.optim_name,
        bert_model,
        args.lr,
        args.weight_decay,
        weight_decay_excludes=["bias", "LayerNorm", "layer_norm"],
        clip_grad_max_norm=1,
        clip_grad_norm_type=2.0,
    )

    steps = args.epochs * len(train_data_loader)
    warmup_steps = int(steps * args.warmup_proportion)

    lr_scheduler = PolynomialLR(optimizer, steps=steps, end_learning_rate=0.0)

    lr_scheduler = flow.optim.lr_scheduler.WarmUpLR(
        lr_scheduler, warmup_factor=0, warmup_iters=warmup_steps, warmup_method="linear"
    )

    def get_masked_lm_loss(
        logit, masked_lm_labels, label_weights, max_predictions_per_seq,
    ):

        label_id = flow.reshape(masked_lm_labels, [-1])

        # The `positions` tensor might be zero-padded (if the sequence is too
        # short to have the maximum number of predictions). The `label_weights`
        # tensor has a value of 1.0 for every real prediction and 0.0 for the
        # padding predictions.
        pre_example_loss = mlm_criterion(logit, label_id)
        pre_example_loss = flow.reshape(pre_example_loss, [-1, max_predictions_per_seq])
        numerator = flow.sum(pre_example_loss * label_weights)
        denominator = flow.sum(label_weights) + 1e-5
        loss = numerator / denominator
        return loss

    class BertGraph(nn.Graph):
        def __init__(self):
            super().__init__()
            self.bert = bert_model
            self.ns_criterion = ns_criterion
            self.masked_lm_criterion = partial(
                get_masked_lm_loss, max_predictions_per_seq=args.max_predictions_per_seq
            )
            self.add_optimizer(optimizer, lr_sch=lr_scheduler)
            self._train_data_loader = train_data_loader
            if args.grad_acc_steps > 1:
                self.config.set_gradient_accumulation_steps(args.grad_acc_steps)
            if args.use_fp16:
                self.config.enable_amp(True)
                grad_scaler = flow.amp.GradScaler(
                    init_scale=2 ** 30,
                    growth_factor=2.0,
                    backoff_factor=0.5,
                    growth_interval=2000,
                )
                self.set_grad_scaler(grad_scaler)
            self.config.allow_fuse_add_to_output(True)
            self.config.allow_fuse_model_update_ops(True)

        def build(self):

            (
                input_ids,
                next_sentence_labels,
                input_mask,
                segment_ids,
                masked_lm_ids,
                masked_lm_positions,
                masked_lm_weights,
            ) = self._train_data_loader()
            input_ids = input_ids.to(device=device)
            input_mask = input_mask.to(device=device)
            segment_ids = segment_ids.to(device=device)
            next_sentence_labels = next_sentence_labels.to(device=device)
            masked_lm_ids = masked_lm_ids.to(device=device)
            masked_lm_positions = masked_lm_positions.to(device=device)
            masked_lm_weights = masked_lm_weights.to(device=device)

            # 1. forward the next_sentence_prediction and masked_lm model
            prediction_scores, seq_relationship_scores = self.bert(
                input_ids, segment_ids, input_mask, masked_lm_positions
            )

            # 2-1. loss of is_next classification result
            next_sentence_loss = self.ns_criterion(
                seq_relationship_scores.reshape(-1, 2), next_sentence_labels.reshape(-1)
            )

            masked_lm_loss = self.masked_lm_criterion(
                prediction_scores, masked_lm_ids, masked_lm_weights
            )

            total_loss = masked_lm_loss + next_sentence_loss

            total_loss.backward()
            return (
                seq_relationship_scores,
                next_sentence_labels,
                total_loss,
                masked_lm_loss,
                next_sentence_loss,
            )

    bert_graph = BertGraph()

    class BertEvalGraph(nn.Graph):
        def __init__(self):
            super().__init__()
            self.bert = bert_model
            self._test_data_loader = test_data_loader
            self.config.allow_fuse_add_to_output(True)

        def build(self):
            (
                input_ids,
                next_sent_labels,
                input_masks,
                segment_ids,
                masked_lm_ids,
                masked_lm_positions,
                masked_lm_weights,
            ) = self._test_data_loader()
            input_ids = input_ids.to(device=device)
            input_masks = input_masks.to(device=device)
            segment_ids = segment_ids.to(device=device)
            next_sent_labels = next_sent_labels.to(device=device)
            masked_lm_ids = masked_lm_ids.to(device=device)
            masked_lm_positions = masked_lm_positions.to(device)

            with flow.no_grad():
                # 1. forward the next_sentence_prediction and masked_lm model
                _, seq_relationship_scores = self.bert(
                    input_ids, input_masks, segment_ids
                )

            return seq_relationship_scores, next_sent_labels

    bert_eval_graph = BertEvalGraph()

    train_total_losses = []

    for epoch in range(args.epochs):
        metric = Metric(
            desc="bert pretrain",
            print_steps=args.loss_print_every_n_iters,
            batch_size=args.train_global_batch_size * args.grad_acc_steps,
            keys=["total_loss", "mlm_loss", "nsp_loss", "pred_acc"],
        )

        # Train
        bert_model.train()

        for step in range(len(train_data_loader)):
            bert_outputs = pretrain(bert_graph, args.metric_local)

            if flow.env.get_rank() == 0:
                metric.metric_cb(step, epoch=epoch)(bert_outputs)

            train_total_losses.append(bert_outputs["total_loss"])

    # Eval
    bert_model.eval()
    val_acc = validation(
        epoch,
        len(test_data_loader),
        bert_eval_graph,
        args.val_print_every_n_iters,
        args.metric_local,
    )

    save_model(bert_model, args.checkpoint_path, epoch, val_acc, args.use_consistent)
Example #12
0
            avg_not += ans

avg /= float(n * n)
avg_have /= float(G.number_of_edges())
avg_not /= float(n * n - G.number_of_edges())
print "total average: " + str(avg)
print "average with edges: " + str(avg_have)
print "average without edges: " + str(avg_not)

precision = {}
recall = {}
for k in xrange(1, 20):
    TP = FP = TN = FN = 0
    for i in xrange(n):
        lst = []
        for j in xrange(n):
            lst.append((res[i][j], j))
        lst.sort(reverse=True)
        for j in xrange(k):
            if lst[j][1] in G[i]:
                TP += 1
            else:
                FP += 1

    FN = G.number_of_edges() - TP
    TN = n * n - FN - FP - TP
    r = Metric.cal_metric(TP, FP, TN, FN)
    precision[k] = r["precision"]
    recall[k] = r["recall"]
Metric.draw_pr(precision, recall)
Example #13
0
def test_medical(device, model=None, test_organ='liver'):
    assert cfg['panet']['backbone'] == 'unet'

    dataset_name = 'ircadb'

    if model is None:
        model = PANetFewShotSeg(
            in_channels=cfg[dataset_name]['channels'],
            pretrained_path=None,
            cfg={
                'align': True
            },
            encoder_type=cfg['panet']['backbone']).to(device)
        load_state(cfg[dataset_name]['model_name'], model)

    model.eval()

    transforms = Compose([
        Resize(size=cfg['panet']['unet_inp_size']),
    ])

    test_dataset = get_visceral_medical_few_shot_dataset(organs=[test_organ],
                                                         patient_ids=range(
                                                             16, 20),
                                                         shots=5,
                                                         mode='test',
                                                         transforms=transforms)

    testloader = DataLoader(test_dataset,
                            batch_size=1,
                            shuffle=True,
                            num_workers=1,
                            pin_memory=True,
                            drop_last=True)

    metric = Metric(max_label=20, n_runs=1)
    for i_iter, (support,
                 query) in enumerate(tqdm(testloader, position=0, leave=True)):
        support_images = [[]]
        support_fg_mask = [[]]
        support_bg_mask = [[]]
        # for i in range(len(support)):
        support_bg = support[1] == 0
        support_fg = support[1] == 1
        support_images[0].append(support[0].to(device))
        support_fg_mask[0].append(support_fg.float().to(device))
        support_bg_mask[0].append(support_bg.float().to(device))

        query_images = []
        query_labels = []

        # for i in range(len(query)):
        query_images.append(query[0].to(device))
        query_labels.append(query[1].to(device))

        query_labels = torch.cat(query_labels, dim=0).long().to(device)

        query_pred, _ = model(support_images, support_fg_mask, support_bg_mask,
                              query_images)

        print("Support ", i_iter)
        plt.subplot(1, 2, 1)
        try:
            plt.imshow(
                np.moveaxis(support[0].squeeze().cpu().detach().numpy(), 0, 2))
        except np.AxisError:
            plt.imshow(support[0].squeeze().cpu().detach().numpy())
        plt.subplot(1, 2, 2)
        plt.imshow(support[1].squeeze())
        plt.show()

        print("Query ", i_iter)

        plt.subplot(1, 3, 1)
        try:
            plt.imshow(
                np.moveaxis(query[0].squeeze().cpu().detach().numpy(), 0, 2))
        except np.AxisError:
            plt.imshow(query[0].squeeze().cpu().detach().numpy())
        plt.subplot(1, 3, 2)
        plt.imshow(query[1].squeeze())
        plt.subplot(1, 3, 3)
        plt.imshow(np.array(query_pred.argmax(dim=1)[0].cpu()))
        metric.record(np.array(query_pred.argmax(dim=1)[0].cpu()),
                      np.array(query_labels[0].cpu()),
                      n_run=0)
        plt.show()

    classIoU, meanIoU = metric.get_mIoU(n_run=0)
    classIoU_binary, meanIoU_binary = metric.get_mIoU_binary(n_run=0)

    print('classIoU', classIoU.tolist())
    print('meanIoU', meanIoU.tolist())
    print('classIoU_binary', classIoU_binary.tolist())
    print('meanIoU_binary', meanIoU_binary.tolist())
    print('classIoU: {}'.format(classIoU))
    print('meanIoU: {}'.format(meanIoU))
    print('classIoU_binary: {}'.format(classIoU_binary))
    print('meanIoU_binary: {}'.format(meanIoU_binary))
Example #14
0
def main():

    hidden_size = 64 * args.num_attention_heads  # H = 64, size per head
    intermediate_size = hidden_size * 4

    print("Create Bert model for SQuAD")
    squad_model = SQuAD(
        args.vocab_size,
        seq_length=args.seq_length,
        hidden_size=hidden_size,
        hidden_layers=args.num_hidden_layers,
        atten_heads=args.num_attention_heads,
        intermediate_size=intermediate_size,
        hidden_act=nn.GELU(),
        hidden_dropout_prob=args.hidden_dropout_prob,
        attention_probs_dropout_prob=args.attention_probs_dropout_prob,
        max_position_embeddings=args.max_position_embeddings,
        type_vocab_size=args.type_vocab_size,
        initializer_range=0.02,
    )

    # Load pretrain model from lazy trained model
    load_params_from_lazy(squad_model.state_dict(), args.model_load_dir)

    squad_model.to(device)

    if args.do_train:
        print("Create SQuAD training data decoders")
        train_decoders = SquadDecoder(
            args.train_data_dir, batch_size, args.train_data_part_num, args.seq_length
        )

        optimizer = build_adamW_optimizer(
            squad_model,
            args.learning_rate,
            args.weight_decay_rate,
            weight_decay_excludes=["bias", "LayerNorm", "layer_norm"],
        )

        lr_scheduler = PolynomialLR(
            optimizer, steps=args.iter_num, end_learning_rate=0.0
        )

        warmup_batches = int(args.iter_num * args.warmup_proportion)
        lr_scheduler = flow.optim.lr_scheduler.WarmUpLR(
            lr_scheduler,
            warmup_factor=0,
            warmup_iters=warmup_batches,
            warmup_method="linear",
        )

        class SQuADGraph(nn.Graph):
            def __init__(self):
                super().__init__()
                self.squad_model = squad_model
                self.criterion = nn.CrossEntropyLoss()

                self.add_optimizer(optimizer, lr_sch=lr_scheduler)
                self._decoders = train_decoders
                if args.use_fp16:
                    self.config.enable_amp(True)
                    grad_scaler = flow.amp.GradScaler(
                        init_scale=2 ** 30,
                        growth_factor=2.0,
                        backoff_factor=0.5,
                        growth_interval=2000,
                    )
                    self.set_grad_scaler(grad_scaler)

            def build(self):
                (
                    input_ids,
                    input_mask,
                    segment_ids,
                    start_positions,
                    end_positions,
                ) = self._decoders()
                input_ids = input_ids.to(device=device)
                input_mask = input_mask.to(device=device)
                segment_ids = segment_ids.to(device=device)
                start_positions = start_positions.to(device=device)
                end_positions = end_positions.to(device=device)

                start_logits, end_logits = self.squad_model(
                    input_ids, segment_ids, input_mask
                )
                start_logits = flow.reshape(start_logits, [-1, args.seq_length])
                end_logits = flow.reshape(end_logits, [-1, args.seq_length])

                start_loss = self.criterion(start_logits, start_positions.squeeze(1))
                end_loss = self.criterion(end_logits, end_positions.squeeze(1))
                total_loss = (start_loss + end_loss) * 0.5
                total_loss.backward()

                return total_loss

        squad_graph = SQuADGraph()

        for epoch in range(args.num_epochs):
            squad_model.train()

            metric = Metric(
                desc="train",
                print_steps=args.loss_print_every_n_iter,
                batch_size=batch_size,
                keys=["total_loss"],
            )
            for step in range(epoch_size):
                metric.metric_cb(step, epoch=epoch)(squad_finetune(squad_graph))

        if args.save_last_snapshot:
            save_model(squad_model, args.model_save_dir, "last_snapshot")

    if args.do_eval:
        assert os.path.isdir(args.eval_data_dir)
        print("Create SQuAD testing data decoders")
        test_decoders = SquadDecoder(
            args.eval_data_dir,
            eval_batch_size,
            args.eval_data_part_num,
            args.seq_length,
            is_train=False,
        )

        squad_model.eval()

        class SQuADEvalGraph(nn.Graph):
            def __init__(self):
                super().__init__()
                self.squad_model = squad_model
                self._decoders = test_decoders

            def build(self):
                (input_ids, input_mask, segment_ids, unique_ids) = self._decoders()
                input_ids = input_ids.to(device=device)
                input_mask = input_mask.to(device=device)
                segment_ids = segment_ids.to(device=device)
                unique_ids = unique_ids.to(device=device)

                with flow.no_grad():
                    start_logits, end_logits = self.squad_model(
                        input_ids, segment_ids, input_mask
                    )

                return unique_ids, start_logits, end_logits

        squad_eval_graph = SQuADEvalGraph()

        squad_eval(num_eval_steps, squad_eval_graph, args.loss_print_every_n_iter)
def main():

    args = get_config()

    if args.with_cuda:
        device = flow.device("cuda")
    else:
        device = flow.device("cpu")

    print("Creating Dataloader")
    train_data_loader = OfRecordDataLoader(
        ofrecord_dir=args.ofrecord_path,
        mode="train",
        dataset_size=args.train_dataset_size,
        batch_size=args.train_batch_size,
        data_part_num=args.train_data_part,
        seq_length=args.seq_length,
        max_predictions_per_seq=args.max_predictions_per_seq,
        consistent=False,
    )

    test_data_loader = OfRecordDataLoader(
        ofrecord_dir=args.ofrecord_path,
        mode="test",
        dataset_size=1024,
        batch_size=args.val_batch_size,
        data_part_num=4,
        seq_length=args.seq_length,
        max_predictions_per_seq=args.max_predictions_per_seq,
        consistent=False,
    )

    print("Building BERT Model")
    hidden_size = 64 * args.num_attention_heads
    intermediate_size = 4 * hidden_size
    bert_model = BertForPreTraining(
        args.vocab_size,
        args.seq_length,
        hidden_size,
        args.num_hidden_layers,
        args.num_attention_heads,
        intermediate_size,
        nn.GELU(),
        args.hidden_dropout_prob,
        args.attention_probs_dropout_prob,
        args.max_position_embeddings,
        args.type_vocab_size,
    )

    # Load the same initial parameters with lazy model.
    # from utils.compare_lazy_outputs import load_params_from_lazy
    # load_params_from_lazy(
    #     bert_model.state_dict(),
    #     "../../OneFlow-Benchmark/LanguageModeling/BERT/initial_model",
    # )

    bert_model = bert_model.to(device)
    if args.use_ddp:
        bert_model = ddp(bert_model)

    optimizer = build_optimizer(
        args.optim_name,
        bert_model,
        args.lr,
        args.weight_decay,
        weight_decay_excludes=["bias", "LayerNorm", "layer_norm"],
        clip_grad_max_norm=1,
        clip_grad_norm_type=2.0,
    )

    steps = args.epochs * len(train_data_loader)
    warmup_steps = int(steps * args.warmup_proportion)

    lr_scheduler = PolynomialLR(optimizer, steps=steps, end_learning_rate=0.0)

    lr_scheduler = flow.optim.lr_scheduler.WarmUpLR(lr_scheduler,
                                                    warmup_factor=0,
                                                    warmup_iters=warmup_steps,
                                                    warmup_method="linear")

    ns_criterion = nn.CrossEntropyLoss(reduction="mean")
    mlm_criterion = nn.CrossEntropyLoss(reduction="none")

    def get_masked_lm_loss(
        logit_blob,
        masked_lm_positions,
        masked_lm_labels,
        label_weights,
        max_prediction_per_seq,
    ):
        # gather valid position indices
        logit_blob = flow.gather(
            logit_blob,
            index=masked_lm_positions.unsqueeze(2).repeat(
                1, 1, args.vocab_size),
            dim=1,
        )

        logit_blob = flow.reshape(logit_blob, [-1, args.vocab_size])
        label_id_blob = flow.reshape(masked_lm_labels, [-1])

        # The `positions` tensor might be zero-padded (if the sequence is too
        # short to have the maximum number of predictions). The `label_weights`
        # tensor has a value of 1.0 for every real prediction and 0.0 for the
        # padding predictions.
        pre_example_loss = mlm_criterion(logit_blob, label_id_blob)
        pre_example_loss = flow.reshape(pre_example_loss,
                                        [-1, max_prediction_per_seq])
        numerator = flow.sum(pre_example_loss * label_weights)
        denominator = flow.sum(label_weights) + 1e-5
        loss = numerator / denominator
        return loss

    train_total_losses = []
    for epoch in range(args.epochs):
        metric = Metric(
            desc="bert pretrain",
            print_steps=args.loss_print_every_n_iters,
            batch_size=args.train_batch_size,
            keys=["total_loss", "mlm_loss", "nsp_loss", "pred_acc"],
        )

        # Train
        bert_model.train()

        for step in range(len(train_data_loader)):
            bert_outputs = pretrain(
                train_data_loader,
                bert_model,
                ns_criterion,
                partial(
                    get_masked_lm_loss,
                    max_prediction_per_seq=args.max_predictions_per_seq,
                ),
                optimizer,
                lr_scheduler,
            )

            if flow.env.get_rank() == 0:
                metric.metric_cb(step, epoch=epoch)(bert_outputs)

            train_total_losses.append(bert_outputs["total_loss"])

        # Eval
        bert_model.eval()
        val_acc = validation(epoch, test_data_loader, bert_model,
                             args.val_print_every_n_iters)

        save_model(bert_model, args.checkpoint_path, epoch, val_acc, False)
Example #16
0
def test_panet(device, model=None, dataset_name='voc', test_organ='liver'):
    if model is None:
        # pretrained_path='../data/vgg16-397923af.pth'
        model = PANetFewShotSeg(
            in_channels=cfg[dataset_name]['channels'],
            pretrained_path=None,
            cfg={
                'align': True
            },
            encoder_type=cfg['panet']['backbone']).to(device)
        load_state(cfg[dataset_name]['model_name'], model)

    model.eval()

    if dataset_name == 'voc':
        transforms = Compose([
            Resize(size=cfg['panet']['vgg_inp_size']),
        ])
    elif dataset_name == 'ircadb':
        transforms = Compose([
            Resize(size=cfg['panet']['unet_inp_size']),
        ])

    if dataset_name == 'voc':
        test_dataset = get_pascal_few_shot_datasets(
            range(16, 21), cfg['panet']['test_iterations'], cfg['nshot'],
            cfg['nquery'], transforms)
    elif dataset_name == 'ircadb':
        test_dataset = get_ircadb_few_shot_datasets(
            organs=[test_organ],
            patient_ids=range(16, 21),
            iterations=cfg['panet']['test_iterations'],
            N_shot=cfg['nshot'],
            N_query=cfg['nquery'],
            transforms=transforms)

    testloader = DataLoader(test_dataset,
                            batch_size=1,
                            shuffle=True,
                            num_workers=1,
                            pin_memory=True,
                            drop_last=True)

    metric = Metric(max_label=20, n_runs=1)
    for i_iter, (support, query) in enumerate(testloader):
        support_images = [[]]
        support_fg_mask = [[]]
        support_bg_mask = [[]]
        for i in range(len(support)):
            support_images[0].append(support[i][0].to(device))
            support_fg_mask[0].append(support[i][1].to(device))
            support_bg_mask[0].append(support[i][2].to(device))

        query_images = []
        query_labels = []

        for i in range(len(query)):
            query_images.append(query[i][0].to(device))
            query_labels.append(query[i][1].to(device))

        query_labels = torch.cat(query_labels, dim=0).long().to(device)

        query_pred, _ = model(support_images, support_fg_mask, support_bg_mask,
                              query_images)

        print("Support ", i_iter)
        for i in range(len(support)):
            plt.subplot(1, 2 * len(support), 2 * i + 1)
            try:
                plt.imshow(
                    np.moveaxis(support[i][0].squeeze().cpu().detach().numpy(),
                                0, 2))
            except np.AxisError:
                plt.imshow(support[i][0].squeeze().cpu().detach().numpy())
            plt.subplot(1, 2 * len(support), 2 * i + 2)
            plt.imshow(support[i][1].squeeze())
        plt.show()

        print("Query ", i_iter)

        for i in range(len(query)):
            plt.subplot(1, 3 * len(query), 3 * i + 1)
            try:
                plt.imshow(
                    np.moveaxis(query[i][0].squeeze().cpu().detach().numpy(),
                                0, 2))
            except np.AxisError:
                plt.imshow(query[i][0].squeeze().cpu().detach().numpy())
            plt.subplot(1, 3 * len(query), 3 * i + 2)
            plt.imshow(query[i][1].squeeze())
            plt.subplot(1, 3 * len(query), 3 * i + 3)
            plt.imshow(np.array(query_pred.argmax(dim=1)[i].cpu()))
            metric.record(np.array(query_pred.argmax(dim=1)[i].cpu()),
                          np.array(query_labels[i].cpu()),
                          n_run=0)
        plt.show()

    classIoU, meanIoU = metric.get_mIoU(n_run=0)
    classIoU_binary, meanIoU_binary = metric.get_mIoU_binary(n_run=0)

    print('classIoU', classIoU.tolist())
    print('meanIoU', meanIoU.tolist())
    print('classIoU_binary', classIoU_binary.tolist())
    print('meanIoU_binary', meanIoU_binary.tolist())
    print('classIoU: {}'.format(classIoU))
    print('meanIoU: {}'.format(meanIoU))
    print('classIoU_binary: {}'.format(classIoU_binary))
    print('meanIoU_binary: {}'.format(meanIoU_binary))
Example #17
0
    def __call__(self, args):
        super(Train, self).__call__(args)

        train = Corpus.load(args.ftrain, self.fields)
        dev = Corpus.load(args.fdev, self.fields)
        test = Corpus.load(args.ftest, self.fields)

        train = TextDataset(train, self.fields, args.buckets)
        dev = TextDataset(dev, self.fields, args.buckets)
        test = TextDataset(test, self.fields, args.buckets)
        # set the data loaders
        train.loader = batchify(train, args.batch_size, True)
        dev.loader = batchify(dev, args.batch_size)
        test.loader = batchify(test, args.batch_size)
        print(f"{'train:':6} {len(train):5} sentences, "
              f"{len(train.loader):3} batches, "
              f"{len(train.buckets)} buckets")
        print(f"{'dev:':6} {len(dev):5} sentences, "
              f"{len(dev.loader):3} batches, "
              f"{len(train.buckets)} buckets")
        print(f"{'test:':6} {len(test):5} sentences, "
              f"{len(test.loader):3} batches, "
              f"{len(train.buckets)} buckets")

        print("Create the model")
        self.model = Model(args).load_pretrained(self.WORD.embed)
        print(f"{self.model}\n")
        self.model = self.model.to(args.device)
        if torch.cuda.device_count() > 1:
            self.model = nn.DataParallel(self.model)
        self.optimizer = Adam(self.model.parameters(), args.lr,
                              (args.mu, args.nu), args.epsilon)
        self.scheduler = ExponentialLR(self.optimizer,
                                       args.decay**(1 / args.decay_steps))

        total_time = timedelta()
        best_e, best_metric = 1, Metric()

        for epoch in range(1, args.epochs + 1):
            start = datetime.now()
            # train one epoch and update the parameters
            self.train(train.loader)

            print(f"Epoch {epoch} / {args.epochs}:")
            loss, train_metric = self.evaluate(train.loader)
            print(f"{'train:':6} Loss: {loss:.4f} {train_metric}")
            loss, dev_metric = self.evaluate(dev.loader)
            print(f"{'dev:':6} Loss: {loss:.4f} {dev_metric}")
            loss, test_metric = self.evaluate(test.loader)
            print(f"{'test:':6} Loss: {loss:.4f} {test_metric}")

            t = datetime.now() - start
            # save the model if it is the best so far
            if dev_metric > best_metric and epoch > args.patience:
                best_e, best_metric = epoch, dev_metric
                if hasattr(self.model, 'module'):
                    self.model.module.save(args.model)
                else:
                    self.model.save(args.model)
                print(f"{t}s elapsed (saved)\n")
            else:
                print(f"{t}s elapsed\n")
            total_time += t
            if epoch - best_e >= args.patience:
                break
        self.model = Model.load(args.model)
        loss, metric = self.evaluate(test.loader)

        print(f"max score of dev is {best_metric.score:.2%} at epoch {best_e}")
        print(f"the score of test at epoch {best_e} is {metric.score:.2%}")
        print(f"average time of each epoch is {total_time / epoch}s")
        print(f"{total_time}s elapsed")
Example #18
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument('--ds',
                        type=str,
                        default='sentiment140',
                        choices=('sentiment140', 'tsad', 'semeval'),
                        help='dataset on which to train')
    parser.add_argument(
        '--no-val',
        action='store_true',
        default=False,
        help=
        'if specified, do not create a validation set and use it to choose the best model, '
        'instead just use the model from the final iteration')

    parser.add_argument(
        '--test-model',
        type=str,
        help=
        'specify the filename of a pre-trained model,  which will be loaded '
        'and evaluated on the test set of the specified dataset')
    parser.add_argument('--arch',
                        type=str,
                        choices=('cnn', 'lstm', 'cnn-lstm', 'lstm-cnn',
                                 'textcnn', 'bilstm'),
                        help='model architecture to use')
    parser.add_argument(
        '--nonlin',
        type=str,
        choices=('sign11', 'qrelu', 'relu', 'threshrelu'),
        help='non-linearity to use in the specified architecture')
    parser.add_argument('--loss',
                        type=str,
                        default='crossent',
                        choices=('crossent', ),
                        help='the loss function to use for training')

    parser.add_argument('--tp-rule',
                        type=str,
                        default='SoftHinge',
                        choices=[e.name for e in targetprop.TPRule],
                        help='the TargetProp rule to use')

    parser.add_argument('--batch',
                        type=int,
                        default=64,
                        help='batch size to use for training')
    parser.add_argument('--epochs',
                        type=int,
                        default=100,
                        help='number of epochs to train for')
    parser.add_argument('--opt',
                        type=str,
                        default='adam',
                        choices=('sgd', 'rmsprop', 'adam'),
                        help='optimizer to use to train')
    parser.add_argument('--lr', type=float, help='starting learning rate')
    parser.add_argument('--momentum',
                        type=float,
                        default=0.9,
                        help='momentum amount for SGD')
    parser.add_argument('--wtdecay',
                        type=float,
                        default=0,
                        help='weight decay (L2 regularization) amount')
    parser.add_argument(
        '--lr-decay',
        type=float,
        default=0.1,
        help=
        'factor by which to multiply the learning rate at each value in <lr-decay-epochs>'
    )
    parser.add_argument(
        '--lr-decay-epochs',
        type=int,
        nargs='+',
        default=None,
        help=
        'list of epochs at which to multiply the learning rate by <lr-decay>')

    parser.add_argument('--gpus',
                        type=int,
                        default=[0],
                        nargs='+',
                        help='which GPU device ID(s) to train on')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='if specified, use CPU only')

    arg_list = deepcopy(sys.argv)
    args = parser.parse_args()

    if args.arch is None or args.nonlin is None or args.lr is None:
        print('ERROR: arch, nonlin, and lr arguments must be specified\n')
        parser.print_help()
        exit(-1)

    assert (args.ds == 'semeval') == (args.arch == 'bilstm')

    uses_tp = (args.nonlin == 'sign11' or args.nonlin == 'qrelu')

    curtime = datetime.now().strftime('%Y.%m.%d_%H.%M.%S')
    arch_str = args.arch
    op_str = args.opt + '_lr{}_mu{}_wd{}{}'.format(
        args.lr, args.momentum, args.wtdecay, 'noval' if args.no_val else '')
    tp_str = args.nonlin + ('-' + args.tp_rule if uses_tp else '')
    args.save = os.path.join(
        'logs', args.ds, curtime + '.' + arch_str + '.' + args.loss + '.' +
        op_str + '.' + tp_str)

    if args.test_model:
        args.save = args.save + '_test'
        args.no_val = True

    args.tp_rule = targetprop.TPRule[args.tp_rule]

    gpu_str = ','.join(str(g) for g in args.gpus)
    if not args.no_cuda:
        os.environ['CUDA_VISIBLE_DEVICES'] = gpu_str
    args.cuda = not args.no_cuda and torch.cuda.is_available()

    np.random.seed(seed)
    torch.manual_seed(seed)
    if args.cuda:
        torch.cuda.manual_seed(seed)
        print('using cuda device{}: {}'.format(
            's' if len(args.gpus) > 1 else '', gpu_str))

    if os.path.exists(args.save):
        shutil.rmtree(args.save)
    os.makedirs(args.save, exist_ok=True)

    log_formatter = logging.Formatter(
        '%(asctime)s.%(msecs)03d [%(levelname)-5.5s] %(message)s',
        datefmt='%Y.%m.%d %H:%M:%S')
    root_logger = logging.getLogger()
    root_logger.setLevel(logging.DEBUG)

    print("logging to file '{}.log'".format(args.save))
    file_handler = logging.FileHandler(args.save + '.log')
    file_handler.setFormatter(log_formatter)
    file_handler.setLevel(logging.DEBUG)
    root_logger.addHandler(file_handler)

    console_handler = logging.StreamHandler()
    console_handler.setFormatter(log_formatter)
    console_handler.setLevel(logging.DEBUG)
    root_logger.addHandler(console_handler)

    logging.info('command line call: {}'.format(" ".join(arg_list)))
    logging.info('arguments: {}'.format(args))

    if not args.test_model:
        logging.info("training a deep network with the specified arguments")
    else:
        logging.info("testing model '{}' with the specified arguments".format(
            args.test_model))

    backcompat.broadcast_warning.enabled = True
    warnings.filterwarnings("ignore",
                            "volatile was removed and now has no effect")

    # ----- create datasets -----
    train_loader, val_loader, test_loader, num_classes, embedding_vector = \
        create_datasets(args.ds, args.batch, args.no_val, args.cuda, seed)

    metrics = {
        'loss': Metric('loss', float('inf'), False),
        'acc': Metric('acc', 0.0, True),
        'p': Metric('p', 0.0, True),
        'r': Metric('r', 0.0, True),
        'f1': Metric('f1', 0.0, True)
    }
    if args.ds == 'semeval':
        metrics['f_0'] = Metric('f_0', 0.0, True)
        metrics['f_1'] = Metric('f_1', 0.0, True)
        metrics['f_avg'] = Metric('f_avg', 0.0, True)
    metrics = {
        'train': deepcopy(metrics),
        'val': deepcopy(metrics),
        'test': deepcopy(metrics)
    }

    # ----- create loss function -----
    loss_function = get_loss_function(args.loss)

    # either train a model from scratch or load and evaluate a model from disk
    if not args.test_model:
        # ----- create model -----
        model = create_model(args, num_classes, embedding_vector)

        logging.info('created {} model:\n {}'.format(arch_str, model))
        logging.info("{} model has {} parameters".format(
            arch_str, sum([p.data.nelement() for p in model.parameters()])))
        print('num params: ',
              {n: p.data.nelement()
               for n, p in model.named_parameters()})

        # ----- create optimizer -----
        optimizer = get_optimizer(model, args)

        if val_loader:
            logging.info(
                'evaluating training on validation data (train size = {}, val size = {}, test size = {})'
                .format(len(train_loader.dataset), len(val_loader.dataset),
                        len(test_loader.dataset)))
        else:
            logging.info(
                'not using validation data (train size = {}, test size = {})'.
                format(len(train_loader.dataset), len(test_loader.dataset)))

        cudnn.benchmark = True

        # ----- train the model -----
        timers = {}
        best_model_state = train_model(args.epochs, model, optimizer,
                                       loss_function, train_loader,
                                       None if args.no_val else val_loader,
                                       test_loader, args.cuda, args.lr_decay,
                                       args.lr_decay_epochs, args.save,
                                       metrics, args, timers)

        logging.info('testing on trained model ({})'.format(
            'final' if args.no_val else 'best'))
        model.load_state_dict(best_model_state)
        test_model(model,
                   loss_function,
                   test_loader,
                   args.cuda,
                   True,
                   use_target=args.ds == 'semeval',
                   use_f=args.ds == 'semeval')

    else:
        model = create_model(args, num_classes, embedding_vector)
        logging.info("loading test model from '{}'".format(args.test_model))
        state = torch.load(args.test_model, map_location='cpu')
        model.load_state_dict(state['model_state'])
        test_model(model,
                   loss_function,
                   test_loader,
                   args.cuda,
                   True,
                   use_target=args.ds == 'semeval',
                   use_f=args.ds == 'semeval')

    print('')
    logging.info("log file: '{}.log'".format(args.save))
    logging.info("log dir: '{}'".format(args.save))
    if not args.test_model:
        logging.info("best F score model: '{}'".format(
            os.path.join(args.save, best_model_name)))
Example #19
0
class Metrics:
    metrics = []
    # region [Metrics]
    timezone = Metric("Timezone", tz_processor)
    metrics.append(timezone)
    # Jvm Heap size
    yg_allocated = Metric("Young gen: allocated", yg_allocated_processor)
    yg_allocated.legend = " KB"
    metrics.append(yg_allocated)

    yg_peak = Metric("Young gen: peak", yg_peak_processor)
    yg_peak.legend = " KB"
    metrics.append(yg_peak)

    og_allocated = Metric("Old gen: allocated", og_allocated_processor)
    og_allocated.legend = " KB"
    metrics.append(og_allocated)

    og_peak = Metric("Old gen: peak", og_peak_processor)
    metrics.append(og_peak)

    meta_allocated = Metric("Metaspace: allocated", meta_allocated_processor)
    metrics.append(meta_allocated)

    meta_peak = Metric("Metaspace: peak", meta_peak_processor)
    metrics.append(meta_peak)

    yom_allocated = Metric("Young + Old + Meta: allocated",
                           yom_allocated_processor)
    metrics.append(yom_allocated)  # dont use this

    yom_peak = Metric("Young + Old + Meta: peak",
                      yom_peak_processor)  # and this one
    metrics.append(yom_peak)  # as these are just sum of max values

    heap_allocated = Metric("Heap: allocated", heap_allocated_processor)
    metrics.append(heap_allocated)

    heap_peak = Metric("Heap: peak", heap_peak_processor)
    metrics.append(heap_peak)

    pause_avg = Metric("Pause GC time: Average", pause_avg_processor)
    metrics.append(pause_avg)

    pause_max = Metric("Pause GC time: Max", pause_max_processor)
    metrics.append(pause_max)

    pause_duration_timerange = Metric(
        "Pause duration timerange array, split by 100ms range: 0-9 wheres the last one contains > 1 sec values",
        pause_duration_timerange_processor)
    metrics.append(pause_duration_timerange)

    minor_gc_count = Metric("Minor gc: count", minor_gc_count_processor)
    metrics.append(minor_gc_count)

    minor_gc_reclaimed = Metric("Minor gc: reclaimed",
                                minor_gc_reclaimed_processor)
    metrics.append(minor_gc_reclaimed)

    minor_gc_time_total = Metric("Minor gc time: total",
                                 minor_gc_time_total_processor)
    metrics.append(minor_gc_time_total)

    minor_gc_time_avg = Metric("Minor gc time: avg",
                               minor_gc_time_avg_processor)
    metrics.append(minor_gc_time_avg)

    minor_gc_time_stddev = Metric("Minor gc time: standard deviation",
                                  minor_gc_time_std_dev_processor)
    metrics.append(minor_gc_time_stddev)

    minor_gc_time_min = Metric("Minor gc time: Min",
                               minor_gc_time_min_processor)
    metrics.append(minor_gc_time_min)

    minor_gc_time_max = Metric("Minor gc time: Min, Max",
                               minor_gc_time_max_processor)
    metrics.append(minor_gc_time_max)

    minor_gc_interval_average = Metric("Minor gc: average interval",
                                       minor_gc_interval_average_processor)
    metrics.append(minor_gc_interval_average)
    #
    full_gc_count = Metric("full gc: count", full_gc_count_processor)
    metrics.append(full_gc_count)

    full_gc_reclaimed = Metric("full gc: reclaimed",
                               full_gc_reclaimed_processor)
    metrics.append(full_gc_reclaimed)

    full_gc_time_total = Metric("full gc time: total",
                                full_gc_time_total_processor)
    metrics.append(full_gc_time_total)

    full_gc_time_avg = Metric("full gc time: avg", full_gc_time_avg_processor)
    metrics.append(full_gc_time_avg)

    full_gc_time_stddev = Metric("full gc time: standard deviation",
                                 full_gc_time_std_dev_processor)
    metrics.append(full_gc_time_stddev)

    full_gc_time_max = Metric("full gc time: Min, Max",
                              full_gc_time_max_processor)
    metrics.append(full_gc_time_max)

    full_gc_time_min = Metric("full gc time: Min, Max",
                              full_gc_time_min_processor)
    metrics.append(full_gc_time_min)

    full_gc_interval_average = Metric("full gc: average interval",
                                      full_gc_interval_average_processor)
    metrics.append(full_gc_interval_average)

    total_pause_average = Metric("Total GC pause: average",
                                 total_pause_average_processor)
    metrics.append(total_pause_average)

    total_pause_stdev = Metric("Total GC pause: stddev",
                               total_pause_stdev_processor)
    metrics.append(total_pause_stdev)

    total_pause_interval_average = Metric(
        "Total GC pause: average interval",
        total_pause_interval_average_processor)
    metrics.append(total_pause_interval_average)
    """
    Total: count = full+minor counts
    Reclaimed  = full+minor reclaimed
    time: f+m
    avg_time: new
    stdev: new
    min_max: min(mins), max(maxes)
    interval_avg: new
    
    """
    pause_min = Metric("Pause: min", pause_min_processor)
    metrics.append(pause_min)

    ## object stats:
    total_created_bytes = Metric("Total created, kilobytes:",
                                 total_created_bytes_processor)
    metrics.append(total_created_bytes)

    total_promoted_bytes = Metric("Total promoted, kilobytes:",
                                  total_promoted_bytes_processor)
    metrics.append(total_promoted_bytes)

    average_creation_rate = Metric("Average creation rate:",
                                   average_creation_rate_processor)
    metrics.append(average_creation_rate)

    average_promotion_rate = Metric("Average promotion rate:",
                                    average_promotion_rate_processor)
    metrics.append(average_promotion_rate)

    total_program_duration = Metric("Duration:",
                                    total_program_duration_processor)
    metrics.append(total_program_duration)

    filename = Metric("Filename:", filename_processor)
    metrics.append(filename)