Example #1
0
def make_feed_dict(data, init=False, **params):
    if type(data) is tuple:
        x, y = data
    else:
        x = data
        y = None
    x = np.cast[np.float32]((x - 127.5) / 127.5)  ## preprocessing

    if args.use_coordinates:
        g = grid.generate_grid((x.shape[1], x.shape[2]), batch_size=x.shape[0])
        xg = np.concatenate([x, g], axis=-1)
        xg, _ = uf.random_crop_images(xg,
                                      output_size=(args.input_size,
                                                   args.input_size))
        x, g = xg[:, :, :, :3], xg[:, :, :, 3:]
    else:
        x, _ = uf.random_crop_images(x,
                                     output_size=(args.input_size,
                                                  args.input_size))

    if 'mask_generator' in params:
        mgen = params['mask_generator']
        ms = mgen.gen(x.shape[0])
        x_masked = x * uf.broadcast_mask(ms, 3)
        x_masked = np.concatenate(
            [x_masked, uf.broadcast_mask(ms, 1)], axis=-1)

    # global conditioning
    if args.global_conditional:
        global_lv = []
        if 'z' in params:
            global_lv.append(params['z'])
        global_lv = np.concatenate(global_lv, axis=-1)

    # spatial conditioning
    if args.spatial_conditional:
        spatial_lv = []
        if args.context_conditioning:
            spatial_lv.append(x_masked)
        spatial_lv = np.concatenate(spatial_lv, axis=-1)

    if init:
        feed_dict = {x_init: x}
        if args.global_conditional:
            feed_dict.update({gh_init: global_lv})
        if args.spatial_conditional:
            feed_dict.update({sh_init: spatial_lv})
        if args.use_coordinates:
            c1 = g
            c2 = grid.zoom_batch(c1, [obs_shape[0] // 2, obs_shape[1] // 2])
            c4 = grid.zoom_batch(c1, [obs_shape[0] // 4, obs_shape[1] // 4])

            feed_dict.update({ch_1_init: c1})
            feed_dict.update({ch_2_init: c2})
            feed_dict.update({ch_4_init: c4})
    else:
        x = np.split(x, args.nr_gpu)
        feed_dict = {xs[i]: x[i] for i in range(args.nr_gpu)}
        if args.global_conditional:
            global_lv = np.split(global_lv, args.nr_gpu)
            feed_dict.update(
                {ghs[i]: global_lv[i]
                 for i in range(args.nr_gpu)})
        if args.spatial_conditional:
            spatial_lv = np.split(spatial_lv, args.nr_gpu)
            feed_dict.update(
                {shs[i]: spatial_lv[i]
                 for i in range(args.nr_gpu)})
        if args.use_coordinates:
            c1 = g
            c2 = grid.zoom_batch(c1, [obs_shape[0] // 2, obs_shape[1] // 2])
            c4 = grid.zoom_batch(c1, [obs_shape[0] // 4, obs_shape[1] // 4])

            c1 = np.split(c1, args.nr_gpu)
            c2 = np.split(c2, args.nr_gpu)
            c4 = np.split(c4, args.nr_gpu)

            feed_dict.update({ch_1[i]: c1[i] for i in range(args.nr_gpu)})
            feed_dict.update({ch_2[i]: c2[i] for i in range(args.nr_gpu)})
            feed_dict.update({ch_4[i]: c4[i] for i in range(args.nr_gpu)})
    return feed_dict
def complete(sess, data, mask, **params):
    if type(data) is tuple:
        x, y = data
    else:
        x = data
        y = None
    x = np.cast[np.float32]((x - 127.5) / 127.5)  ## preprocessing
    # mask images
    masks = uf.broadcast_mask(mask, 3, x.shape[0])
    x *= masks

    if 'x_hats' in params:
        x_hats = params['x_hats']
        x_hats = (x_hats * 2.) - 1.

    x_ret = np.split(x, args.nr_gpu)

    # global conditioning
    if args.global_conditional:
        global_lv = []
        if 'z' in params:
            global_lv.append(params['z'])
        global_lv = np.concatenate(global_lv, axis=-1)

    global_g = grid.generate_grid((x.shape[1], x.shape[2]),
                                  batch_size=x.shape[0])

    if args.global_conditional:
        global_lv = np.split(global_lv, args.nr_gpu)
        feed_dict.update({ghs[i]: global_lv[i] for i in range(args.nr_gpu)})

    while True:
        # find the next pixel and the corresonding window
        p = uf.find_next_missing_pixel(mask)
        if p is None:
            break
        window = uf.find_maximally_conditioned_window(mask, 32, p)
        print(p, window)
        [[h0, h1], [w0, w1]] = window
        g = global_g[:, h0 - 2:h1 + 2, w0 - 2:w1 + 2, :]
        # mw = mask[h0:h1, w0:w1]
        # xw = x[:, h0:h1, w0:w1, :]
        x_hatsw = x_hats[:, h0 - 2:h1 + 2, w0 - 2:w1 + 2, :]
        x_hatsws = np.split(x_hatsw, args.nr_gpu)
        yi, xi = p[0] - h0, p[1] - w0

        # spatial conditioning
        if args.spatial_conditional:
            spatial_lv = []
            if 'use_coordinates' in params and params['use_coordinates']:
                spatial_lv.append(g)
            if 'x_hats' in params:
                spatial_lv.append(x_hatsw)
            spatial_lv = np.concatenate(spatial_lv, axis=-1)

        if args.spatial_conditional:
            spatial_lv = np.split(spatial_lv, args.nr_gpu)
            feed_dict.update(
                {shs[i]: spatial_lv[i]
                 for i in range(args.nr_gpu)})

        x_gen = [
            x_ret[i][:, h0:h1, w0:w1, :].copy() for i in range(args.nr_gpu)
        ]  # np.split(xw, args.nr_gpu)

        feed_dict.update({xs[i]: x_gen[i] for i in range(args.nr_gpu)})
        new_x_gen_np = sess.run(new_x_gen, feed_dict=feed_dict)
        for i in range(args.nr_gpu):
            x_ret[i][:, p[0], p[1], :] = new_x_gen_np[i][:, yi, xi, :]

        mask[p[0], p[1]] = 1

    return np.concatenate(x_ret, axis=0)
Example #3
0
def sample_from_model(sess, data=None, **params):
    if type(data) is tuple:
        x, y = data
    else:
        x = data
        y = None
    x = np.cast[np.float32]((x - 127.5) / 127.5)  ## preprocessing

    if args.use_coordinates:
        g = grid.generate_grid((x.shape[1], x.shape[2]), batch_size=x.shape[0])
        xg = np.concatenate([x, g], axis=-1)
        xg, _ = uf.random_crop_images(xg,
                                      output_size=(args.input_size,
                                                   args.input_size))
        x, g = xg[:, :, :, :3], xg[:, :, :, 3:]
    else:
        x, _ = uf.random_crop_images(x,
                                     output_size=(args.input_size,
                                                  args.input_size))

    if 'mask_generator' in params:
        mgen = params['mask_generator']
        ms = mgen.gen(x.shape[0])
        x_masked = x * uf.broadcast_mask(ms, 3)
        x_masked = np.concatenate(
            [x_masked, uf.broadcast_mask(ms, 1)], axis=-1)

    # global conditioning
    if args.global_conditional:
        global_lv = []
        if 'z' in params:
            global_lv.append(params['z'])
        global_lv = np.concatenate(global_lv, axis=-1)

    # spatial conditioning
    if args.spatial_conditional:
        spatial_lv = []
        if args.context_conditioning:
            spatial_lv.append(x_masked)
        spatial_lv = np.concatenate(spatial_lv, axis=-1)

    feed_dict = {}  ##
    # coordinates conditioning:
    if args.use_coordinates:
        c1 = g
        c2 = grid.zoom_batch(c1, [obs_shape[0] // 2, obs_shape[1] // 2])
        c4 = grid.zoom_batch(c1, [obs_shape[0] // 4, obs_shape[1] // 4])

        c1 = np.split(c1, args.nr_gpu)
        c2 = np.split(c2, args.nr_gpu)
        c4 = np.split(c4, args.nr_gpu)

        feed_dict.update({ch_1[i]: c1[i] for i in range(args.nr_gpu)})
        feed_dict.update({ch_2[i]: c2[i] for i in range(args.nr_gpu)})
        feed_dict.update({ch_4[i]: c4[i] for i in range(args.nr_gpu)})

    if args.global_conditional:
        global_lv = np.split(global_lv, args.nr_gpu)
        feed_dict.update({ghs[i]: global_lv[i] for i in range(args.nr_gpu)})
    if args.spatial_conditional:
        spatial_lv = np.split(spatial_lv, args.nr_gpu)
        feed_dict.update({shs[i]: spatial_lv[i] for i in range(args.nr_gpu)})

    if 'mask_generator' in params:
        x_gen = np.split(x_masked[:, :, :, :3], args.nr_gpu)
    else:
        x_gen = [np.zeros_like(x) for i in range(args.nr_gpu)]

    for yi in range(obs_shape[0]):
        for xi in range(obs_shape[1]):
            if ('mask_generator' not in params) or ms[0][yi, xi] == 0:
                feed_dict.update({xs[i]: x_gen[i] for i in range(args.nr_gpu)})
                new_x_gen_np = sess.run(new_x_gen, feed_dict=feed_dict)
                for i in range(args.nr_gpu):
                    x_gen[i][:, yi, xi, :] = new_x_gen_np[i][:, yi, xi, :]
    return np.concatenate(x_gen, axis=0)
Example #4
0
def complete(sess, data, mask, **params):
    if type(data) is tuple:
        x, y = data
    else:
        x = data
        y = None
    x = np.cast[np.float32]((x - 127.5) / 127.5)  ## preprocessing
    # mask images
    x_ret = x * uf.broadcast_mask(mask, 3, x.shape[0])
    x_ret = np.split(x_ret, args.nr_gpu)
    x_masked = np.concatenate([
        np.concatenate(x_ret, axis=0),
        uf.broadcast_mask(mask, 1, x.shape[0])
    ],
                              axis=-1)

    # global conditioning
    if args.global_conditional:
        global_lv = []
        if 'z' in params:
            global_lv.append(params['z'])
        global_lv = np.concatenate(global_lv, axis=-1)

    if args.global_conditional:
        global_lv = np.split(global_lv, args.nr_gpu)
        feed_dict.update({ghs[i]: global_lv[i] for i in range(args.nr_gpu)})

    global_g = grid.generate_grid((x.shape[1], x.shape[2]),
                                  batch_size=x.shape[0])

    while True:
        # find the next pixel and the corresonding window
        p = uf.find_next_missing_pixel(mask)
        if p is None:
            break
        window = uf.find_maximally_conditioned_window(mask, 32, p)
        print(p, window)
        [[h0, h1], [w0, w1]] = window
        g = global_g[:, h0:h1, w0:w1, :]

        x_masked_w = x_masked[:, h0:h1, w0:w1, :]

        yi, xi = p[0] - h0, p[1] - w0

        # spatial conditioning
        if args.spatial_conditional:
            spatial_lv = []
            if args.context_conditioning:
                spatial_lv.append(x_masked_w)
            spatial_lv = np.concatenate(spatial_lv, axis=-1)
        if args.spatial_conditional:
            spatial_lv = np.split(spatial_lv, args.nr_gpu)
            feed_dict.update(
                {shs[i]: spatial_lv[i]
                 for i in range(args.nr_gpu)})

        # coordinates conditioning:
        if args.use_coordinates:
            c1 = g
            c2 = grid.zoom_batch(c1, [obs_shape[0] // 2, obs_shape[1] // 2])
            c4 = grid.zoom_batch(c1, [obs_shape[0] // 4, obs_shape[1] // 4])

            c1 = np.split(c1, args.nr_gpu)
            c2 = np.split(c2, args.nr_gpu)
            c4 = np.split(c4, args.nr_gpu)

            feed_dict.update({ch_1[i]: c1[i] for i in range(args.nr_gpu)})
            feed_dict.update({ch_2[i]: c2[i] for i in range(args.nr_gpu)})
            feed_dict.update({ch_4[i]: c4[i] for i in range(args.nr_gpu)})

        x_gen = [x_ret[i][:, h0:h1, w0:w1, :] for i in range(args.nr_gpu)]

        feed_dict.update({xs[i]: x_gen[i] for i in range(args.nr_gpu)})
        new_x_gen_np = sess.run(new_x_gen, feed_dict=feed_dict)
        for i in range(args.nr_gpu):
            x_ret[i][:, p[0], p[1], :] = new_x_gen_np[i][:, yi, xi, :]

        mask[p[0], p[1]] = 1
        #x_masked = np.concatenate([np.concatenate(x_ret, axis=0), uf.broadcast_mask(mask, 1, x.shape[0])], axis=-1)

    return np.concatenate(x_ret, axis=0)