Example #1
0
 def __init__(self, hp, rest, parser):
     start_time = time.time()
     self.oracle = HyperParameterSelector(hp, rest, parser, self.name)
     with self.oracle.synchronization():
         self.data = EmbeddingData(self.name,
                                   self.oracle.args['batch_size'])
         self.model = NGramModel(self.data, self.oracle)
         self.loss = get_loss('cos', self.data, self.model)
         self.global_step = tf.train.get_or_create_global_step()
         self.learning_rate = tf.train.exponential_decay(
             self.oracle.args['learning_rate'],
             self.global_step,
             self.oracle.args['decay_epoch'] * self.data.total_step,
             self.oracle.args['decay_rate'],
             staircase=True)
         self.optimizer = get_opt(self.oracle.args['optimizer'],
                                  self.learning_rate)
         grads_and_vars = self.optimizer.compute_gradients(self.loss)
         # gradients, variables = list(zip(*grads_and_vars))
         self.train_op = self.optimizer.apply_gradients(
             grads_and_vars, self.global_step)
         self.saver = tf.train.Saver(tf.global_variables())
         self.summaries_op = tf.summary.merge([
             tf.summary.scalar('loss', self.loss),
             tf.summary.scalar('learning_rate', self.learning_rate)
         ])
         self.init_op = tf.group(tf.global_variables_initializer(),
                                 tf.local_variables_initializer())
         fu.block_print('Pipeline setup done with %.2fs' %
                        (time.time() - start_time))
Example #2
0
    def train_setup(self):
        main_loss = mu.get_loss(self._hp['loss'], self.data.gt, self.output)
        regu_loss = tf.losses.get_regularization_loss()

        loss = main_loss + regu_loss

        train_answer = tf.argmax(self.output, axis=1)
        train_accuracy, train_accuracy_update, train_accuracy_initializer \
            = mu.get_acc(self.data.gt, train_answer, name='train_accuracy')

        global_step = tf.train.get_or_create_global_step()

        decay_step = int(self._hp['decay_epoch'] * len(self.data))
        learning_rate = mu.get_lr(self._hp['decay_type'],
                                  self._hp['learning_rate'], global_step,
                                  decay_step, self._hp['decay_rate'])

        optimizer = mu.get_opt(self._hp['opt'], learning_rate, decay_step)

        grads_and_vars = optimizer.compute_gradients(loss)
        # grads_and_vars = [(tf.clip_by_norm(grad, 0.01, axes=[0]), var) if grad is not None else (grad, var)
        #                   for grad, var in grads_and_vars ]
        gradients, variables = list(zip(*grads_and_vars))
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            train_op = tf.group(
                optimizer.apply_gradients(grads_and_vars, global_step),
                train_accuracy_update)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        # Summary
        train_gv_summaries = []
        for idx, grad in enumerate(gradients):
            if grad is not None:
                train_gv_summaries.append(
                    tf.summary.histogram('gradients/' + variables[idx].name,
                                         grad))
                train_gv_summaries.append(
                    tf.summary.histogram(variables[idx].name, variables[idx]))

        train_summaries = [
            tf.summary.scalar('train_loss', loss),
            tf.summary.scalar('train_accuracy', train_accuracy),
            tf.summary.scalar('learning_rate', learning_rate)
        ]
        self.train_summaries_op = tf.summary.merge(train_summaries)
        self.train_gv_summaries_op = tf.summary.merge(train_gv_summaries +
                                                      train_summaries)

        self.train_init_op_list = [
            self.data.initializer, train_accuracy_initializer
        ]

        self.train_op_list = [train_op, loss, train_accuracy, global_step]
Example #3
0
    def __init__(self):

        if reset:
            if os.path.exists(self._checkpoint_dir):
                os.system('rm -rf %s' % self._checkpoint_dir)
            if os.path.exists(self._log_dir):
                os.system('rm -rf %s' % self._log_dir)
            if os.path.exists(self._attn_dir):
                os.system('rm -rf %s' % self._attn_dir)

        fu.make_dirs(os.path.join(self._checkpoint_dir, 'best'))
        fu.make_dirs(self._log_dir)
        fu.make_dirs(self._attn_dir)

        self.train_data = Input(split='train', mode=args.mode)
        self.val_data = Input(split='val', mode=args.mode)
        # self.test_data = TestInput()

        self.train_model = mod.Model(self.train_data,
                                     scale=hp['reg'],
                                     training=True)
        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            self.val_model = mod.Model(self.val_data)

        # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        #     self.test_model = mod.Model(self.test_data, training=False)

        for v in tf.trainable_variables():
            print(v)

        self.main_loss = mu.get_loss(hp['loss'], self.train_data.gt,
                                     self.train_model.output)
        self.regu_loss = tf.losses.get_regularization_loss()

        self.loss = 0
        self.loss += self.main_loss
        self.loss += self.regu_loss

        self.train_answer = tf.argmax(self.train_model.output, axis=1)
        self.train_accuracy, self.train_accuracy_update, self.train_accuracy_initializer \
            = mu.get_acc(self.train_data.gt, self.train_answer, name='train_accuracy')

        self.val_answer = tf.argmax(self.val_model.output, axis=1)
        self.val_accuracy, self.val_accuracy_update, self.val_accuracy_initializer \
            = mu.get_acc(self.val_data.gt, tf.argmax(self.val_model.output, axis=1), name='val_accuracy')

        self.global_step = tf.train.get_or_create_global_step()

        decay_step = int(hp['decay_epoch'] * len(self.train_data))
        self.learning_rate = mu.get_lr(hp['decay_type'], hp['learning_rate'],
                                       self.global_step, decay_step,
                                       hp['decay_rate'])

        self.optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)

        grads_and_vars = self.optimizer.compute_gradients(self.loss)

        lang_grads_and_vars = [(grad, var) for grad, var in grads_and_vars
                               if 'Visual' not in var.name]
        vis_grad_and_vars = [(grad, var) for grad, var in grads_and_vars
                             if 'Visual' in var.name]

        self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(self.update_ops):
            self.lang_train_op = tf.group(
                self.optimizer.apply_gradients(lang_grads_and_vars,
                                               self.global_step),
                self.train_accuracy_update)
            self.vis_train_op = tf.group(
                self.optimizer.apply_gradients(vis_grad_and_vars,
                                               self.global_step),
                self.train_accuracy_update)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        if args.checkpoint:
            self.checkpoint_file = args.checkpoint
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(
                self._checkpoint_dir)

        self.train_init_op_list = [
            self.train_data.initializer, self.train_accuracy_initializer
        ]

        self.val_init_op_list = [
            self.val_data.initializer, self.val_accuracy_initializer
        ]

        self.lang_train_op_list = [
            self.lang_train_op, self.loss, self.train_accuracy,
            self.global_step
        ]
        self.vis_train_op_list = [
            self.vis_train_op, self.loss, self.train_accuracy, self.global_step
        ]

        self.val_op_list = [self.val_accuracy, self.val_accuracy_update]

        if attn:
            self.lang_train_op_list += [
                self.train_model.attn, self.train_model.belief,
                self.train_data.gt, self.train_answer
            ]
            self.vis_train_op_list += [
                self.train_model.attn, self.train_model.belief,
                self.train_data.gt, self.train_answer
            ]
            self.val_op_list += [
                self.val_model.attn, self.val_model.belief, self.val_data.gt,
                self.val_answer
            ]
Example #4
0
    def __init__(self):

        if reset:
            if os.path.exists(self._checkpoint_dir):
                os.system('rm -rf %s' % self._checkpoint_dir)
            if os.path.exists(self._log_dir):
                os.system('rm -rf %s' % self._log_dir)

        fu.make_dirs(os.path.join(self._checkpoint_dir, 'best'))
        fu.make_dirs(self._log_dir)

        self.train_data = Input(split='train', mode=args.mode)
        self.val_data = Input(split='val', mode=args.mode)
        # self.test_data = TestInput()

        self.train_model = mod.Model(self.train_data, beta=hp['reg'], training=True)
        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            self.val_model = mod.Model(self.val_data)

        # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        #     self.test_model = mod.Model(self.test_data, training=False)

        for v in tf.trainable_variables():
            print(v)

        self.main_loss = mu.get_loss(hp['loss'], self.train_data.gt, self.train_model.output)
        self.real_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
            logits=self.train_model.real_logit, labels=tf.ones_like(self.train_model.real_logit)))
        self.fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
            logits=self.train_model.fake_logit, labels=tf.zeros_like(self.train_model.fake_logit)))
        self.d_loss = self.real_loss + self.fake_loss
        self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
            logits=self.train_model.fake_logit, labels=tf.ones_like(self.train_model.fake_logit)))
        self.regu_loss = tf.losses.get_regularization_loss()

        self.loss = self.g_loss
        self.loss += self.main_loss
        self.loss += self.regu_loss

        self.d_loss += self.regu_loss

        self.train_accuracy, self.train_accuracy_update, self.train_accuracy_initializer \
            = mu.get_acc(self.train_data.gt, tf.argmax(self.train_model.output, axis=1), name='train_accuracy')

        self.val_accuracy, self.val_accuracy_update, self.val_accuracy_initializer \
            = mu.get_acc(self.val_data.gt, tf.argmax(self.val_model.output, axis=1), name='val_accuracy')

        self.global_step = tf.train.get_or_create_global_step()

        decay_step = int(hp['decay_epoch'] * len(self.train_data))
        self.learning_rate = mu.get_lr(hp['decay_type'], hp['learning_rate'], self.global_step,
                                       decay_step, hp['decay_rate'])

        self.optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)
        self.d_optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)

        grads_and_vars = self.optimizer.compute_gradients(self.loss, var_list=tf.trainable_variables('QA'))
        gradients, variables = list(zip(*grads_and_vars))
        self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(self.update_ops):
            self.train_op = tf.group(self.optimizer.apply_gradients(grads_and_vars),
                                     self.d_optimizer.minimize(self.d_loss, self.global_step,
                                                               tf.trainable_variables('Discriminator')),
                                     self.train_accuracy_update)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        # Summary
        train_gv_summaries = []
        for idx, grad in enumerate(gradients):
            if grad is not None:
                train_gv_summaries.append(tf.summary.histogram('gradients/' + variables[idx].name, grad))
                train_gv_summaries.append(tf.summary.histogram(variables[idx].name, variables[idx]))

        train_summaries = [
            tf.summary.scalar('train_loss', self.loss),
            tf.summary.scalar('train_accuracy', self.train_accuracy),
            tf.summary.scalar('learning_rate', self.learning_rate)
        ]
        self.train_summaries_op = tf.summary.merge(train_summaries)
        self.train_gv_summaries_op = tf.summary.merge(train_gv_summaries + train_summaries)

        self.val_summaries_op = tf.summary.scalar('val_accuracy', self.val_accuracy)

        if args.checkpoint:
            self.checkpoint_file = args.checkpoint
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(self._checkpoint_dir)

        self.train_init_op_list = [self.train_data.initializer, self.train_accuracy_initializer]

        self.val_init_op_list = [self.val_data.initializer, self.val_accuracy_initializer]

        self.train_op_list = [self.train_op, self.loss, self.train_accuracy, self.global_step]
        # self.run_metadata = tf.RunMetadata()
        self.val_op_list = [self.val_accuracy, self.val_accuracy_update, self.val_summaries_op]
Example #5
0
    def __init__(self):

        if reset:
            if os.path.exists(self._checkpoint_dir):
                os.system('rm -rf %s' % self._checkpoint_dir)
            if os.path.exists(self._log_dir):
                os.system('rm -rf %s' % self._log_dir)
            if os.path.exists(self._attn_dir):
                os.system('rm -rf %s' % self._attn_dir)

        fu.make_dirs(os.path.join(self._checkpoint_dir, 'best'))
        fu.make_dirs(self._log_dir)
        fu.make_dirs(self._attn_dir)

        self.train_data = Input(split='train', mode=args.mode)
        self.val_data = Input(split='val', mode=args.mode)
        # self.test_data = TestInput()

        self.train_model = mod.Model(self.train_data,
                                     scale=hp['reg'],
                                     training=True)
        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            self.val_model = mod.Model(self.val_data)

        # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        #     self.test_model = mod.Model(self.test_data, training=False)

        for v in tf.trainable_variables():
            print(v)

        self.main_loss = mu.get_loss(hp['loss'], self.train_data.gt,
                                     self.train_model.output)
        self.regu_loss = tf.losses.get_regularization_loss()

        self.loss = 0
        self.loss += self.main_loss
        self.loss += self.regu_loss

        self.train_answer = tf.argmax(self.train_model.output, axis=1)
        self.train_accuracy, self.train_accuracy_update, self.train_accuracy_initializer \
            = mu.get_acc(self.train_data.gt, self.train_answer, name='train_accuracy')

        self.val_answer = tf.argmax(self.val_model.output, axis=1)
        self.val_accuracy, self.val_accuracy_update, self.val_accuracy_initializer \
            = mu.get_acc(self.val_data.gt, tf.argmax(self.val_model.output, axis=1), name='val_accuracy')

        self.global_step = tf.train.get_or_create_global_step()

        decay_step = int(hp['decay_epoch'] * len(self.train_data))
        self.learning_rate = mu.get_lr(hp['decay_type'], hp['learning_rate'],
                                       self.global_step, decay_step,
                                       hp['decay_rate'])

        self.optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)

        grads_and_vars = self.optimizer.compute_gradients(self.loss)
        # grads_and_vars = [(tf.clip_by_norm(grad, 0.01, axes=[0]), var) if grad is not None else (grad, var)
        #                   for grad, var in grads_and_vars ]
        gradients, variables = list(zip(*grads_and_vars))
        self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(self.update_ops):
            self.train_op = tf.group(
                self.optimizer.apply_gradients(grads_and_vars,
                                               self.global_step),
                self.train_accuracy_update)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        # Summary
        train_gv_summaries = []
        for idx, grad in enumerate(gradients):
            if grad is not None:
                train_gv_summaries.append(
                    tf.summary.histogram('gradients/' + variables[idx].name,
                                         grad))
                train_gv_summaries.append(
                    tf.summary.histogram(variables[idx].name, variables[idx]))

        train_summaries = [
            tf.summary.scalar('train_loss', self.loss),
            tf.summary.scalar('train_accuracy', self.train_accuracy),
            tf.summary.scalar('learning_rate', self.learning_rate)
        ]
        self.train_summaries_op = tf.summary.merge(train_summaries)
        self.train_gv_summaries_op = tf.summary.merge(train_gv_summaries +
                                                      train_summaries)

        self.val_summaries_op = tf.summary.scalar('val_accuracy',
                                                  self.val_accuracy)

        if args.checkpoint:
            self.checkpoint_file = args.checkpoint
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(
                self._checkpoint_dir)

        self.train_init_op_list = [
            self.train_data.initializer, self.train_accuracy_initializer
        ]

        self.val_init_op_list = [
            self.val_data.initializer, self.val_accuracy_initializer
        ]

        self.train_op_list = [
            self.train_op, self.loss, self.train_accuracy, self.global_step
        ]

        self.val_op_list = [
            self.val_accuracy, self.val_accuracy_update, self.val_summaries_op
        ]

        if attn:
            self.train_op_list += [
                self.train_model.attn, self.train_model.belief,
                self.train_data.gt, self.train_answer
            ]
            self.val_op_list += [
                self.val_model.attn, self.val_model.belief, self.val_data.gt,
                self.val_answer
            ]
Example #6
0
    def __init__(self):

        if reset:
            if os.path.exists(self._checkpoint_dir):
                os.system('rm -rf %s' % self._checkpoint_dir)
            if os.path.exists(self._log_dir):
                os.system('rm -rf %s' % self._log_dir)
            if os.path.exists(self._attn_dir):
                os.system('rm -rf %s' % self._attn_dir)

        fu.make_dirs(os.path.join(self._checkpoint_dir, 'best'))
        fu.make_dirs(self._log_dir)
        fu.make_dirs(self._attn_dir)

        self.train_data = Input(split='train', mode=args.mode)
        self.val_data = Input(split='val', mode=args.mode)
        # self.test_data = TestInput()

        self.train_model = mod.Model(self.train_data, beta=hp['reg'], training=True)
        with tf.variable_scope(tf.get_variable_scope(), reuse=True):
            self.val_model = mod.Model(self.val_data)

        # with tf.variable_scope(tf.get_variable_scope(), reuse=True):
        #     self.test_model = mod.Model(self.test_data, training=False)

        for v in tf.trainable_variables():
            print(v)

        self.train_attn = tf.squeeze(self.train_model.attn[self.train_data.gt[0]])
        self.val_attn = tf.squeeze(self.val_model.attn[self.val_data.gt[0]])
        self.main_loss = mu.get_loss(hp['loss'], self.train_data.gt, self.train_model.output)
        self.attn_loss = mu.get_loss('hinge', tf.to_float(self.train_data.spec), self.train_attn)
        self.regu_loss = tf.losses.get_regularization_loss()

        self.loss = 0
        if 'main' in target:
            self.loss += self.main_loss
        elif 'attn' in target:
            self.loss += self.attn_loss
        self.loss += self.regu_loss

        self.train_acc, self.train_acc_update, self.train_acc_init = \
            mu.get_acc(self.train_data.gt, tf.argmax(self.train_model.output, axis=1), name='train_accuracy')

        self.train_attn_acc, self.train_attn_acc_update, self.train_attn_acc_init = \
            mu.get_acc(self.train_data.spec, tf.to_int32(self.train_attn > 0.5), name='train_attention_accuracy')

        # self.train_q_attn_acc, self.train_q_attn_acc_update, self.train_q_attn_acc_init = \
        #     tf.metrics.accuracy(self.train_data.spec, self.train_model.output, name='train_q_attention_accuracy')
        #
        # self.train_a_attn_acc, self.train_a_attn_acc_update, self.train_a_attn_acc_init = \
        #     tf.metrics.accuracy(self.train_data.spec, self.train_model.output, name='train_a_attention_accuracy')

        self.val_acc, self.val_acc_update, self.val_acc_init = \
            mu.get_acc(self.val_data.gt, tf.argmax(self.val_model.output, axis=1), name='val_accuracy')

        self.val_attn_acc, self.val_attn_acc_update, self.val_attn_acc_init = \
            mu.get_acc(self.val_data.spec, tf.to_int32(self.val_attn > 0.5), name='val_attention_accuracy')

        # self.val_q_attn_acc, self.val_q_attn_acc_update, self.val_q_attn_acc_init = \
        #     tf.metrics.accuracy(self.train_data.spec, self.train_model.output, name='val_q_attention_accuracy')
        #
        # self.val_a_attn_acc, self.val_a_attn_acc_update, self.val_a_attn_acc_init = \
        #     tf.metrics.accuracy(self.train_data.spec, self.train_model.output, name='val_a_attention_accuracy')

        self.global_step = tf.train.get_or_create_global_step()

        decay_step = int(hp['decay_epoch'] * len(self.train_data))
        self.learning_rate = mu.get_lr(hp['decay_type'], hp['learning_rate'], self.global_step,
                                       decay_step, hp['decay_rate'])

        self.optimizer = mu.get_opt(hp['opt'], self.learning_rate, decay_step)

        grads_and_vars = self.optimizer.compute_gradients(self.loss)
        gradients, variables = list(zip(*grads_and_vars))
        self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(self.update_ops):
            self.train_op = tf.group(self.optimizer.apply_gradients(grads_and_vars, self.global_step),
                                     self.train_acc_update,
                                     self.train_attn_acc_update)  # self.train_a_attn_acc_update, self.train_q_attn_acc_update)

        self.saver = tf.train.Saver(tf.global_variables())
        self.best_saver = tf.train.Saver(tf.global_variables())

        # Summary
        train_gv_summaries = []
        for idx, grad in enumerate(gradients):
            if grad is not None:
                train_gv_summaries.append(tf.summary.histogram('gradients/' + variables[idx].name, grad))
                train_gv_summaries.append(tf.summary.histogram(variables[idx].name, variables[idx]))

        train_summaries = [
            tf.summary.scalar('train_loss', self.loss),
            tf.summary.scalar('train_accuracy', self.train_acc),
            # tf.summary.scalar('train_a_attn_accuracy', self.train_a_attn_acc),
            # tf.summary.scalar('train_q_attn_accuracy', self.train_q_attn_acc),
            tf.summary.scalar('train_attn_accuracy', self.train_attn_acc),
            tf.summary.scalar('learning_rate', self.learning_rate)
        ]
        self.train_summaries_op = tf.summary.merge(train_summaries)
        self.train_gv_summaries_op = tf.summary.merge(train_gv_summaries + train_summaries)

        val_summaries = [
            tf.summary.scalar('val_accuracy', self.val_acc),
            tf.summary.scalar('val_attn_accuracy', self.val_attn_acc),
            # tf.summary.scalar('val_a_attn_accuracy', self.val_a_attn_acc),
            # tf.summary.scalar('val_q_attn_accuracy', self.val_q_attn_acc),
        ]
        self.val_summaries_op = tf.summary.merge(val_summaries)

        if args.checkpoint:
            self.checkpoint_file = args.checkpoint
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(self._checkpoint_dir)

        self.train_init_op_list = [self.train_data.initializer, self.train_acc_init,
                                   # self.train_q_attn_acc_init, self.train_a_attn_acc_init,
                                   self.train_attn_acc_init]

        self.val_init_op_list = [self.val_data.initializer, self.val_acc_init,
                                 # self.val_q_attn_acc_init, self.val_a_attn_acc_init,
                                 self.val_attn_acc_init]

        self.train_op_list = [self.train_op, self.loss, self.attn_loss, self.train_acc,
                              self.train_attn_acc,  # self.val_q_attn_acc, self.val_a_attn_acc,
                              self.global_step, self.train_data.spec, self.train_attn]
        self.val_op_list = [self.val_acc, self.val_attn_acc,  # self.val_q_attn_acc, self.val_a_attn_acc,
                            tf.group(self.val_acc_update, self.val_attn_acc_update
                                     # self.val_q_attn_acc_update, self.val_a_attn_acc_update
                                     ),
                            self.val_summaries_op, self.val_data.spec, self.val_attn]
Example #7
0
def old_main():
    data = EmbeddingData(args.batch_size)
    if args.model == 'myconv':
        model = MyConvModel(data,
                            char_dim=args.char_dim,
                            conv_channel=args.conv_channel)
    elif args.model == 'myrnn':
        model = MyModel(data,
                        char_dim=args.char_dim,
                        hidden_dim=args.hidden_dim,
                        num_layers=args.nlayers)
    elif args.model == 'mimick':
        model = EmbeddingModel(data,
                               char_dim=args.char_dim,
                               hidden_dim=args.hidden_dim)
    elif args.model == 'matrice':
        model = MatricesModel(data)
    else:
        model = None

    args_dict = vars(args)
    pairs = [(k, str(args_dict[k])) for k in sorted(args_dict.keys())
             if args_dict[k] != parser.get_default(k)
             and not isinstance(args_dict[k], bool)]
    if pairs:
        exp_name = '_'.join(['.'.join(pair) for pair in pairs])
    else:
        exp_name = '.'.join(('learning_rate', str(args.learning_rate)))

    log_dir = join(config.log_dir, 'embedding_log', exp_name)
    checkpoint_dir = join(config.checkpoint_dir, 'embedding_checkpoint',
                          exp_name)
    checkpoint_name = join(checkpoint_dir, 'embedding')

    if args.reset:
        if exists(checkpoint_dir):
            os.system('rm -rf %s' % os.path.join(checkpoint_dir, '*'))
        if os.path.exists(log_dir):
            os.system('rm -rf %s' % os.path.join(log_dir, '*'))
    fu.make_dirs(log_dir)
    fu.make_dirs(checkpoint_dir)

    loss = get_loss(args.loss, data, model) + get_loss(args.sec_loss, data,
                                                       model)

    baseline = tf.losses.mean_squared_error(data.vec, model.output)

    global_step = tf.train.get_or_create_global_step()
    total_step = int(math.floor(data.num_example / args.batch_size))
    # learning_rate = tf.train.exponential_decay(args.learning_rate,
    #                                            global_step,
    #                                            args.decay_epoch * total_step,
    #                                            args.decay_rate,
    #                                            staircase=True)
    learning_rate = args.learning_rate
    optimizer = get_opt(args.optimizer, learning_rate)

    grads_and_vars = optimizer.compute_gradients(loss)
    gradients, variables = list(zip(*grads_and_vars))
    for var in variables:
        print(var.name, var.shape)

    if not args.model == 'myconv':
        capped_grads_and_vars = [(tf.clip_by_norm(gv[0],
                                                  args.clip_norm), gv[1])
                                 for gv in grads_and_vars]
    else:
        capped_grads_and_vars = grads_and_vars

    train_op = optimizer.apply_gradients(capped_grads_and_vars, global_step)
    saver = tf.train.Saver(tf.global_variables(), )

    # Summary
    train_gv_summaries = []
    for idx, var in enumerate(variables):
        train_gv_summaries.append(
            tf.summary.histogram('gradient/' + var.name, gradients[idx]))
        train_gv_summaries.append(tf.summary.histogram(var.name, var))

    train_gv_summaries_op = tf.summary.merge(train_gv_summaries)

    train_summaries = [
        tf.summary.scalar('loss', loss),
        tf.summary.scalar('baseline', baseline),
        tf.summary.scalar('learning_rate', learning_rate)
    ]
    train_summaries_op = tf.summary.merge(train_summaries)

    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())

    if args.checkpoint_file:
        checkpoint_file = args.checkpoint_file
    else:
        checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)

    # restore_fn = (lambda _sess: saver.restore(_sess, checkpoint_file)) \
    #     if checkpoint_file else (lambda _sess: _sess.run(init_op))

    # sv = tf.train.Supervisor(logdir=log_dir, summary_op=None,
    #                          init_fn=restore_fn, save_model_secs=0,
    #                          saver=saver, global_step=global_step)

    config_ = tf.ConfigProto(allow_soft_placement=True, )
    config_.gpu_options.allow_growth = True
    with tf.Session(
            config=config_) as sess, tf.summary.FileWriter(log_dir) as sw:
        sess.run(init_op)

        if checkpoint_file:
            saver.restore(sess, checkpoint_file)

        def save():
            saver.save(sess, checkpoint_name,
                       tf.train.global_step(sess, global_step))

        def save_sum(summary_):
            sw.add_summary(summary_, tf.train.global_step(sess, global_step))

        # Training loop
        def train_loop(epoch_, y=0, y_=0):
            shuffle(data.file_names)
            sess.run(data.iterator.initializer,
                     feed_dict={
                         data.file_names_placeholder:
                         data.file_names[:args.give_shards],
                     })
            step = tf.train.global_step(sess, global_step)
            print("Training Loop Epoch %d" % epoch_)
            step = step % total_step
            pbar = trange(step, total_step)
            for _ in pbar:
                try:
                    _, l, bl, step, y, y_, gv_summary, summary = sess.run([
                        train_op, loss, baseline, global_step, model.output,
                        data.vec, train_gv_summaries_op, train_summaries_op
                    ])
                    if step % max((total_step // 100), 10) == 0:
                        save_sum(summary)
                        save_sum(gv_summary)
                    if step % max((total_step // 10), 100) == 0:
                        save()
                    pbar.set_description(
                        '[%s/%s] step: %d loss: %.3f base: %.3f' %
                        (epoch_, args.epoch, step, l, bl))
                except KeyboardInterrupt:
                    save()
                    print()
                    return True

            print("Training Loop Epoch %d Done..." % epoch_)
            print(y_, y, sep='\n\n\n')
            time.sleep(10)
            save()
            return False

        now_epoch = tf.train.global_step(sess, global_step) // total_step + 1
        for epoch in range(now_epoch, args.epoch + 1):
            if train_loop(epoch):
                break
Example #8
0
    def __init__(self, arguments, args_parser):
        # Initialize all constant parameters,
        # including paths, hyper-parameters, model name...etc.
        self.args = arguments
        self.args_dict = self.args.__dict__
        self.val_dict = {'baseline': 0, 'max_length': 1, 'lock': True}
        self.args_parser = args_parser

        if len(sys.argv) == 1 or self.args.mode == 'inspect':
            self.search_param()
        else:
            self.retrieve_param(self.param_file)

        if self.args.reset:
            self.remove()
        fu.make_dirs(self.log_dir)
        fu.make_dirs(self.checkpoint_dir)
        if args.checkpoint_file:
            self.checkpoint_file = args.checkpoint_file
        else:
            self.checkpoint_file = tf.train.latest_checkpoint(
                self.checkpoint_dir)
        # Lock the current experiment.
        self.lock_exp()
        try:
            # tensorflow pipeline
            tf.reset_default_graph()
            self.data = EmbeddingData(self.args.batch_size)
            with tf.variable_scope('model'):
                self.model = self.get_model()
            self.loss = get_loss(self.args.loss, self.data, self.model) + \
                        get_loss(self.args.sec_loss, self.data, self.model) + \
                        tf.reduce_mean(tf.abs(tf.norm(self.model.output, axis=1) - 1))

            self.baseline = get_loss('mse', self.data, self.model)

            self.global_step = tf.train.get_or_create_global_step()
            self.local_step = tf.get_variable('local_step',
                                              dtype=tf.int32,
                                              initializer=0,
                                              trainable=False)

            self.lr_placeholder = tf.placeholder(tf.float32,
                                                 name='lr_placeholder')
            self.step_placeholder = tf.placeholder(tf.int64,
                                                   name='step_placeholder')
            self.dr_placeholder = tf.placeholder(tf.float32,
                                                 name='dr_placeholder')
            self.learning_rate = tf.train.exponential_decay(
                self.lr_placeholder,
                self.local_step,
                self.args.decay_epoch * self.step_placeholder,
                self.dr_placeholder,
                staircase=True)
            with tf.variable_scope('optimizer'):
                self.optimizer = get_opt(self.args.optimizer,
                                         self.learning_rate)

            grads_and_vars = self.optimizer.compute_gradients(self.loss)
            gradients, variables = list(zip(*grads_and_vars))
            for var in variables:
                print(var.name, var.shape)

            if not args.model == 'myconv':
                capped_grads_and_vars = [
                    (tf.clip_by_norm(gv[0], args.clip_norm), gv[1])
                    for gv in grads_and_vars
                ]
            else:
                capped_grads_and_vars = grads_and_vars

            self.train_op = tf.group(
                self.optimizer.apply_gradients(capped_grads_and_vars,
                                               self.global_step),
                tf.assign(self.local_step, self.local_step + 1))
            self.saver = tf.train.Saver(tf.global_variables(), )

            # Summary
            for idx, var in enumerate(variables):
                tf.summary.histogram('gradient/' + var.name, gradients[idx])
                tf.summary.histogram(var.name, var)

            tf.summary.scalar('loss', self.loss),
            tf.summary.scalar('baseline', self.baseline),
            tf.summary.scalar('learning_rate', self.learning_rate)

            self.train_summaries_op = tf.summary.merge_all()

            self.init_op = tf.variables_initializer(tf.global_variables() +
                                                    tf.local_variables())
            self.init_feed_dict = {
                self.model.init_mean: self.args.init_mean,
                self.model.init_stddev: self.args.init_scale
            }

            pp.pprint(tf.global_variables())
        finally:
            self.unlock_exp()