def run(config_file): # 命令行解析器 args = argparse.ArgumentParser(description='text classification') # 添加命令:配置、重启、计算 args.add_argument('-c', '--config', default=config_file, type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') args.add_argument('-d', '--device', default='0,1', type=str, help='indices of GPUs to enable (default: all)') # 客户参数:可修改的配置 CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') # 添加客户参数:学习率、批量长度 options = [ CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'), CustomArgs(['--bs', '--batch_size'], type=int, target='data_process;args;batch_size') ] # 配置解析器 config = ConfigParser.from_args(args, options) # 打印训练的模型类型 print(config.config['model_arch']['type'].lower()) # 训练 if 'bert' in config.config['model_arch']['type'].lower(): main(config, use_transformers=True) else: main(config, use_transformers=False)
def run(config_file, model_path, text_list): args = argparse.ArgumentParser(description='text classification') # 配置文件、模型路径、计算代理 args.add_argument('-c', '--config', default=config_file, type=str, help='config file path (default: None)') # default=model_path args.add_argument('-r', '--resume', default=model_path, type=str, help='path to latest checkpoint (default: None)') # default='0', args.add_argument('-d', '--device', default='0', type=str, help='indices of GPUs to enable (default: all)') CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') options = [ CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'), CustomArgs(['--bs', '--batch_size'], type=int, target='data_process;args;batch_size') ] config = ConfigParser.from_args(args, options) print(config.config['model_arch']['type'].lower()) if 'bert' in config.config['model_arch']['type'].lower(): main(config, use_transformers=True, text_list=text_list) else: main(config, use_transformers=False, text_list=text_list)
help='path to the directory where parsed documents are saved' 'in case parsed files exist here, KNP is skipped') parser.add_argument('--export-dir', default=None, type=str, help='directory where analysis result is exported') parser.add_argument('-tab', '--tab', action='store_true', default=False, help='whether to output details') parser.add_argument( '--remote-knp', action='store_true', default=False, help='Use KNP running on remote host. ' 'Make sure you specify host address and port in analyzer/config.ini') parser.add_argument( '--skip-untagged', action='store_true', default=False, help='If set, do not export documents which failed to be analyzed') parser.add_argument( '--rel-only', action='store_true', default=False, help='If set, do not add <述語項構造> tag besides <rel> tag to system output' ) parsed_args = parser.parse_args() main(ConfigParser.from_args(parsed_args, run_id=''), parsed_args)
args.add_argument('-c', '--config', default=None, type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') # custom cli options to modify configuration from default values given in json file. CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') options = [ CustomArgs(['-n', '--name'], type=str, target='name'), CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'), CustomArgs(['--bs', '--batch_size'], type=int, target='dataloader;args;batch_size'), CustomArgs(['--u2w', '--utt2wav_val'], type=str, target='valid_dataset;args;wav_scp'), CustomArgs(['--u2l', '--utt2label_val'], type=str, target='valid_dataset;args;utt2label') ] config = ConfigParser.from_args(args, options) main(config)
prediction_writer = PredictionKNPWriter(dataset, logger) with io.StringIO() as string: _ = prediction_writer.write(arguments_set, string, skip_untagged=False) knp_result = string.getvalue() with log_dir.joinpath('pas.knp').open('wt') as f: f.write(knp_result) return knp_result if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-r', '--resume', '-m', '--model', default=None, type=str, help='path to trained checkpoint') parser.add_argument('--ens', '--ensemble', default=None, type=str, help='path to directory where checkpoints to ensemble exist') parser.add_argument('-d', '--device', default='', type=str, help='indices of GPUs to enable (default: all)') parser.add_argument('-c', '--config', default=None, type=str, help='config file path (default: None)') parser.add_argument('--host', default='0.0.0.0', type=str, help='host ip address (default: 0.0.0.0)') parser.add_argument('--port', default=12345, type=int, help='host port number (default: 12345)') args = parser.parse_args() config = ConfigParser.from_args(args, run_id='') analyzer = Analyzer(config, logger=logger) server = SimpleXMLRPCServer((args.host, args.port)) server.register_function(analyze_raw_data_from_client) server.serve_forever()
type=float, help= 'threshold for argument existence. The higher you set, the higher precision gets. [0, 1]' ) parser.add_argument( '--recall-threshold', default=0.0, type=float, help= 'threshold for argument non-existence. The higher you set, the higher recall gets [0, 1]' ) parser.add_argument('--result-suffix', default='', type=str, help='custom evaluation result directory name') parser.add_argument('--run-id', default=None, type=str, help='custom experiment directory name') parser.add_argument('--oracle', action='store_true', default=False, help='use oracle dependency labels') parsed_args = parser.parse_args() inherit_save_dir = (parsed_args.resume is not None and parsed_args.run_id is None) main( ConfigParser.from_args(parsed_args, run_id=parsed_args.run_id, inherit_save_dir=inherit_save_dir), parsed_args)
if __name__ == '__main__': print("n_gpu", str(torch.cuda.device_count())) parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', default=None, type=str, help='config file path (default: None)') parser.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') parser.add_argument('-d', '--device', default='', type=str, help='indices of GPUs to enable (default: "")') parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument("-f", '--freeze_encoder', action='store_true', help='Freeze encoder during training') parsed_args = parser.parse_args() main(ConfigParser.from_args(parsed_args), parsed_args)