Example #1
0
def compute_pose_error(cfg):
    '''
    Computes the error using quaternions and translation vector for COLMAP
    '''

    if os.path.exists(get_colmap_pose_file(cfg)):
        print(' -- already exists, skipping COLMAP eval')
        return

    # Load visiblity and images
    image_path_list = get_colmap_image_path_list(cfg)
    subset_index = get_colmap_image_subset_index(cfg, image_path_list)
    image_name_list = get_item_name_list(image_path_list)

    # Load camera information
    data_dir = get_data_path(cfg)
    calib_list = get_fullpath_list(data_dir, 'calibration')
    calib_dict = load_calib(calib_list, subset_index)

    # Generate all possible pairs from all images
    pair_list = []
    for ii in range(len(image_path_list)):
        for jj in range(ii + 1, len(image_path_list)):
            pair_list.append([ii, jj])

    # Check if colmap results exist. Otherwise, this whole bag is a fail.
    colmap_output_path = get_colmap_output_path(cfg)
    is_colmap_valid = os.path.exists(os.path.join(colmap_output_path, '0'))

    if is_colmap_valid:

        # Find the best colmap reconstruction
        best_index = get_best_colmap_index(cfg)

        print('Computing pose errors')
        #num_cores = int(multiprocessing.cpu_count() * 0.9)
        num_cores = int(len(os.sched_getaffinity(0)) * 0.9)
        result = Parallel(n_jobs=num_cores)(
            delayed(compute_stereo_metrics_from_colmap)(image_path_list[
                pair[0]], image_path_list[pair[1]], calib_dict[image_name_list[
                    pair[0]]], calib_dict[image_name_list[pair[1]]],
                                                        best_index, cfg)
            for pair in tqdm(pair_list))

    # Collect err_q, err_t from results
    err_dict = {}
    for _i in range(len(pair_list)):
        pair = pair_list[_i]
        if is_colmap_valid:
            err_q = result[_i][0]
            err_t = result[_i][1]
        else:
            err_q = np.inf
            err_t = np.inf
        err_dict[image_name_list[pair[0]] + '-' +
                 image_name_list[pair[1]]] = [err_q, err_t]

    # Finally, save packed errors
    save_h5(err_dict, get_colmap_pose_file(cfg))
def is_colmap_complete(cfg):
    '''Checks if stereo evaluation is complete.'''

    # We should have the colmap pose file and no colmap temp path
    is_complete = os.path.exists(get_colmap_pose_file(cfg)) and (
        not os.path.exists(get_colmap_temp_path(cfg)))

    return is_complete
Example #3
0
def run_colmap_for_bag(cfg):
    '''Runs colmap to retrieve poses for each bag'''

    # Colmap pose file already exists, skip the session
    if os.path.exists(get_colmap_pose_file(cfg)):
        print(' -- already exists, skipping COLMAP eval')
        return

    # Load keypoints and matches
    keypoints_dict = load_h5(get_kp_file(cfg))

    matches_dict = load_h5(get_filter_match_file(cfg))

    print('Running COLMAP on "{}", bagsize {} -- bag {}'.format(
        cfg.scene, cfg.bag_size, cfg.bag_id))

    # Additional sanity check to account for crash -- in this case colmap temp
    # directory can exist. This in an indication that you need to remove
    # results and rerun colmap.
    colmap_temp_path = get_colmap_temp_path(cfg)
    colmap_output_path = get_colmap_output_path(cfg)
    if os.path.exists(colmap_temp_path):
        print(' -- temp path exists - cleaning up from crash')
        rmtree(colmap_temp_path)
        if os.path.exists(colmap_output_path):
            rmtree(colmap_output_path)
        if os.path.exists(get_colmap_pose_file(cfg)):
            os.remove(get_colmap_pose_file(cfg))

    # Check existance of colmap result and terminate if already exists.
    colmap_output_path = get_colmap_output_path(cfg)
    if os.path.exists(colmap_output_path):
        print(' -- already exists, skipping COLMAP session')
        return

    # Create output directory
    os.makedirs(colmap_output_path)

    # Create colmap temporary directory and copy files over. Remove anything
    # that might have existed.
    colmap_temp_path = get_colmap_temp_path(cfg)
    if os.path.exists(colmap_temp_path):
        rmtree(colmap_temp_path)

    # Make sure old data is gone and create a new temp folder
    assert (not os.path.exists(colmap_temp_path))
    os.makedirs(colmap_temp_path)

    # Create colmap-friendy structures
    os.makedirs(os.path.join(colmap_temp_path, 'images'))
    os.makedirs(os.path.join(colmap_temp_path, 'features'))

    # Get list of all images in this bag
    image_subset_list = get_colmap_image_path_list(cfg)

    subset_index = get_colmap_image_subset_index(cfg, image_subset_list)

    # Copy images
    for _src in image_subset_list:
        _dst = os.path.join(colmap_temp_path, 'images', os.path.basename(_src))
        copyfile(_src, _dst)

    # Write features to colmap friendly format
    for image_path in image_subset_list:
        # Retrieve image name, with and without extension
        image_name = os.path.basename(image_path)
        image_name_no_ext = os.path.splitext(image_name)[0]
        # Read keypoint
        keypoints = keypoints_dict[image_name_no_ext]
        # Keypoint file to write to
        kp_file = os.path.join(colmap_temp_path, 'features',
                               image_name + '.txt')
        # Open a file to write
        with open(kp_file, 'w') as f:
            # Retieve the number of keypoints
            len_keypoints = len(keypoints)
            f.write(str(len_keypoints) + ' ' + str(128) + '\n')
            for i in range(len_keypoints):
                kp = ' '.join(str(k) for k in keypoints[i][:4])
                desc = ' '.join(str(0) for d in range(128))
                f.write(kp + ' ' + desc + '\n')

    # Write matches to colmap friendly format
    # Read visibilties
    data_dir = get_data_path(cfg)
    vis_list = get_fullpath_list(data_dir, 'visibility')

    # Load matches and store them to a text file
    # TODO: This seems to be done multiple times. Do we need to do this?
    print('Generate list of all possible pairs')
    pairs = compute_image_pairs(vis_list, len(image_subset_list), cfg.vis_th,
                                subset_index)
    print('{} pairs generated'.format(len(pairs)))

    # Write to match file
    match_file = os.path.join(colmap_temp_path, 'matches.txt')
    with open(match_file, 'w') as f:
        for pair in pairs:
            image_1_name = os.path.basename(image_subset_list[pair[0]])
            image_2_name = os.path.basename(image_subset_list[pair[1]])
            image_1_name_no_ext = os.path.splitext(image_1_name)[0]
            image_2_name_no_ext = os.path.splitext(image_2_name)[0]

            # Load matches
            key = '-'.join([image_1_name_no_ext, image_2_name_no_ext])
            matches = np.squeeze(matches_dict[key])
            # only write when matches are given
            if matches.ndim == 2:
                f.write(image_1_name + ' ' + image_2_name + '\n')
                for _i in range(matches.shape[1]):
                    f.write(
                        str(matches[0, _i]) + ' ' + str(matches[1, _i]) + '\n')
                f.write('\n')
    f.close()

    # COLMAP runs -- wrapped in try except to throw errors if subprocess fails
    # and then clean up the colmap temp directory

    try:
        print('COLMAP Feature Import')
        cmd = ['colmap', 'feature_importer']
        cmd += [
            '--database_path',
            os.path.join(colmap_output_path, 'databases.db')
        ]
        cmd += ['--image_path', os.path.join(colmap_temp_path, 'images')]
        cmd += ['--import_path', os.path.join(colmap_temp_path, 'features')]
        colmap_res = subprocess.run(cmd)
        if colmap_res.returncode != 0:
            raise RuntimeError(' -- COLMAP failed to import features!')

        print('COLMAP Match Import')
        cmd = ['colmap', 'matches_importer']
        cmd += [
            '--database_path',
            os.path.join(colmap_output_path, 'databases.db')
        ]
        cmd += [
            '--match_list_path',
            os.path.join(colmap_temp_path, 'matches.txt')
        ]
        cmd += ['--match_type', 'raw']
        cmd += ['--SiftMatching.use_gpu', '0']
        colmap_res = subprocess.run(cmd)
        if colmap_res.returncode != 0:
            raise RuntimeError(' -- COLMAP failed to import matches!')

        print('COLMAP Mapper')
        cmd = ['colmap', 'mapper']
        cmd += ['--image_path', os.path.join(colmap_temp_path, 'images')]
        cmd += [
            '--database_path',
            os.path.join(colmap_output_path, 'databases.db')
        ]
        cmd += ['--output_path', colmap_output_path]
        cmd += ['--Mapper.min_model_size', str(cfg.colmap_min_model_size)]
        colmap_res = subprocess.run(cmd)
        if colmap_res.returncode != 0:
            raise RuntimeError(' -- COLMAP failed to run mapper!')

        # Delete temp directory after working
        rmtree(colmap_temp_path)

    except Exception as err:
        # Remove colmap output path and temp path
        rmtree(colmap_temp_path)
        rmtree(colmap_output_path)

        # Re-throw error
        print(err)
        raise RuntimeError('Parts of colmap runs returns failed state!')

    print('Checking validity of the colmap run just in case')

    # Check validity of colmap reconstruction for all of them
    is_any_colmap_valid = False
    idx_list = [
        os.path.join(colmap_output_path, _d)
        for _d in os.listdir(colmap_output_path)
        if os.path.isdir(os.path.join(colmap_output_path, _d))
    ]
    for idx in idx_list:
        colmap_img_file = os.path.join(idx, 'images.bin')
        if is_colmap_img_valid(colmap_img_file):
            is_any_colmap_valid = True
            break
    if not is_any_colmap_valid:
        print('Error in reading colmap output -- '
              'removing colmap output directory')
        rmtree(colmap_output_path)