def load_data(self, split=0.25):

        excel_file = pd.ExcelFile(self.clinical_data_path)
        df = pd.read_excel(excel_file, 'Patient Data', index_col=[0])
        df = df.rename(columns=df.iloc[0])

        training_image_path = os.path.join(self.dataset_folder, 'images')

        images_list, images, label = preprocess_images(training_image_path)

        features_df = pd.DataFrame().reindex(columns=df.columns)

        for image in images_list:
            # Extract the patient ID name as long as it does not contain a dot
            patient_id = image.split('.')[0]
            features_df = features_df.append(df.loc[patient_id])

        features = process_structured_data(features_df)

        total_size = len(images)
        valid_size = int(split * total_size)
        test_size = int(split * total_size)

        xf_train, xf_valid, im_train, im_valid, y_train, y_valid = train_test_split(
            features, images, label, test_size=valid_size, random_state=42)

        xf_train, xf_test, im_train, im_test, y_train, y_test = train_test_split(
            features, images, label, test_size=test_size, random_state=42)

        return (xf_train, xf_valid, xf_test), (im_train, im_valid,
                                               im_test), (y_train, y_valid,
                                                          y_test)
    def start_video(self, model):
        camera = cv2.VideoCapture(0)
        while True:
            frame = camera.read()[1]
            if frame is None:
                continue
            image_array = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            image_array = cv2.resize(image_array, (300, 300))
            image_array = preprocess_images(image_array)
            selected_boxes = predict(model, image_array, prior_boxes,
                                     frame.shape[0:2], self.num_classes,
                                     self.lower_probability_threshold,
                                     self.iou_threshold, self.background_index,
                                     self.box_scale_factors)
            if selected_boxes is not None:
                draw_video_boxes(selected_boxes, frame, self.arg_to_class,
                                 self.colors, self.font)

            cv2.imshow('webcam', frame)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        camera.release()
        cv2.destroyAllWindows()
    num_ground_truth_boxes = 0
    class_decoder = get_arg_to_class(class_names)
    num_classes = len(class_names)
    data_manager = DataManager(dataset_name, selected_classes, data_prefix,
                               image_prefix)
    ground_truth_data = data_manager.load_data()
    difficult_data_flags = data_manager.parser.difficult_objects

    image_names = sorted(list(ground_truth_data.keys()))
    # print('Number of images found:', len(image_names))
    for image_name in image_names:
        ground_truth_sample = ground_truth_data[image_name]
        image_prefix = data_manager.image_prefix
        image_path = image_prefix + image_name
        image_array, original_image_size = load_image(image_path, input_shape)
        image_array = preprocess_images(image_array)
        predicted_data = predict(model, image_array, prior_boxes,
                                 original_image_size, 21, class_threshold,
                                 iou_threshold)
        ground_truth_sample = denormalize_box(ground_truth_sample,
                                              original_image_size)
        ground_truth_boxes_in_image = len(ground_truth_sample)
        difficult_objects = difficult_data_flags[image_name]
        difficult_objects = np.asarray(difficult_objects, dtype=bool)
        num_ground_truth_boxes += np.sum(np.logical_not(difficult_objects))
        if predicted_data is None:
            # print('Zero predictions given for image:', image_name)
            continue
        #plt.imshow(original_image_array.astype('uint8'))
        #plt.show()
        #draw_image_boxes(predicted_data, original_image_array, class_decoder, normalized=False)
Example #4
0
# image_names = sorted(list(ground_truth_data.keys()))
image_names = list(ground_truth_data.keys())
for image_name in tqdm(image_names):
    ground_truth_sample = ground_truth_data[image_name]
    image_path = image_prefix + image_name

    rgb_image, image_size = load_image(image_path, target_size=(300, 300))
    pytorch_image = preprocess_pytorch_input(rgb_image)
    pytorch_output = pytorch_ssd(pytorch_image)
    p1 = pytorch_output[0].data.numpy()  # bounding boxes
    p2 = softmax(np.squeeze(pytorch_output[1].data.numpy()))  # classes
    p3 = pytorch_output[2].data.numpy()  # prior boxes
    # pytorch_detections = pytorch_output.data

    keras_image = preprocess_images(rgb_image)
    keras_image_input = np.expand_dims(keras_image, axis=0)
    keras_output = model.predict(keras_image_input)
    keras_detection = predict(model, keras_image, prior_boxes, image_size,
                              num_classes, lower_probability_threshold,
                              iou_threshold, background_index)

    keras_output = np.squeeze(keras_output)
    k1 = keras_output[:, :4]
    k2 = keras_output[:, 4:]
    k3 = prior_boxes

    diff = np.abs(p1 - k1)
    diff_mask = .0001 > diff
    all_good = np.all(diff_mask)
    print(all_good)