Example #1
0
def inference(val_func, inputs, data_dict):
    image = data_dict['data']
    ori_shape = image.shape

    if config.eval_resize == False:
        resized_img, scale = image, 1
    else:
        resized_img, scale = dataset.resize_img_by_short_and_max_size(
            image, config.eval_image_short_size, config.eval_image_max_size)
    height, width = resized_img.shape[0:2]

    resized_img = resized_img.astype(np.float32) - config.image_mean
    resized_img = np.ascontiguousarray(resized_img[:, :, [2, 1, 0]])

    im_info = np.array([[height, width, scale, ori_shape[0], ori_shape[1], 0]],
                       dtype=np.float32)

    feed_dict = {inputs[0]: resized_img[None, :, :, :], inputs[1]: im_info}
    print('fd:\n', feed_dict)
    #st = time.time()
    _, scores, pred_boxes, rois = val_func(feed_dict=feed_dict)
    #ed = time.time()
    #print(ed -st)

    boxes = rois[:, 1:5] / scale

    if cfg.TEST.BBOX_REG:
        pred_boxes = bbox_transform_inv(boxes, pred_boxes)
        pred_boxes = clip_boxes(pred_boxes, ori_shape)

    pred_boxes = pred_boxes.reshape(-1, config.num_classes, 4)
    result_boxes = []
    for j in range(1, config.num_classes):
        inds = np.where(scores[:, j] > config.test_cls_threshold)[0]
        cls_scores = scores[inds, j]
        cls_bboxes = pred_boxes[inds, j, :]
        cls_dets = np.hstack(
            (cls_bboxes, cls_scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)

        keep = nms(cls_dets, config.test_nms)
        cls_dets = np.array(cls_dets[keep, :], dtype=np.float, copy=False)
        for i in range(cls_dets.shape[0]):
            db = cls_dets[i, :]
            dbox = DetBox(db[0],
                          db[1],
                          db[2] - db[0],
                          db[3] - db[1],
                          tag=config.class_names[j],
                          score=db[-1])
            result_boxes.append(dbox)
    if len(result_boxes) > config.test_max_boxes_per_image:
        result_boxes = sorted(
            result_boxes, reverse=True, key=lambda t_res: t_res.score) \
            [:config.test_max_boxes_per_image]

    result_dict = data_dict.copy()
    result_dict['result_boxes'] = result_boxes
    return result_dict
Example #2
0
def inference(val_func, inputs, data_dict):
    image = data_dict['data']
    ori_shape = image.shape

    if config.eval_resize == False:
        resized_img, scale = image, 1
    else:
        resized_img, scale = dataset.resize_img_by_short_and_max_size(
            image, config.eval_image_short_size, config.eval_image_max_size)
    height, width = resized_img.shape[0:2]

    resized_img = resized_img.astype(np.float32) - config.image_mean
    resized_img = np.ascontiguousarray(resized_img[:, :, [2, 1, 0]])

    im_info = np.array(
        [[height, width, scale, ori_shape[0], ori_shape[1], 0]],
        dtype=np.float32)

    feed_dict = {inputs[0]: resized_img[None, :, :, :], inputs[1]: im_info}

    #st = time.time()
    _, scores, pred_boxes, rois = val_func(feed_dict=feed_dict)
    #ed = time.time()
    #print(ed -st)

    boxes = rois[:, 1:5] / scale

    if cfg.TEST.BBOX_REG:
        pred_boxes = bbox_transform_inv(boxes, pred_boxes)
        pred_boxes = clip_boxes(pred_boxes, ori_shape)

    pred_boxes = pred_boxes.reshape(-1, config.num_classes, 4)
    result_boxes = []
    for j in range(1, config.num_classes):
        inds = np.where(scores[:, j] > config.test_cls_threshold)[0]
        cls_scores = scores[inds, j]
        cls_bboxes = pred_boxes[inds, j, :]
        cls_dets = np.hstack((cls_bboxes, cls_scores[:, np.newaxis])).astype(
            np.float32, copy=False)

        keep = nms(cls_dets, config.test_nms)
        cls_dets = np.array(cls_dets[keep, :], dtype=np.float, copy=False)
        for i in range(cls_dets.shape[0]):
            db = cls_dets[i, :]
            dbox = DetBox(
                db[0], db[1], db[2] - db[0], db[3] - db[1],
                tag=config.class_names[j], score=db[-1])
            result_boxes.append(dbox)
    if len(result_boxes) > config.test_max_boxes_per_image:
        result_boxes = sorted(
            result_boxes, reverse=True, key=lambda t_res: t_res.score) \
            [:config.test_max_boxes_per_image]

    result_dict = data_dict.copy()
    result_dict['result_boxes'] = result_boxes
    return result_dict