def build_initial_best_motifs():
        length = len(fst(dna_strings))

        def random_mapper(dna_string):
            i = randrange(length - k + 1)
            return dna_string[i: i + k]

        return list(map(random_mapper, dna_strings))
Example #2
0
def detect(filename):
    langs, kws = cfg.read_kws(relative_path(KEYWORDS_DIR, __file__))
    inputs, _ = inputs_dict(filename, kws, langs)
    model_coeffs = cfg.read_config(relative_path(MODEL_CONFIG, __file__))
    responses_dict = compute_neurons(inputs, model_coeffs)
    print(responses_dict)
    min_response = max(responses_dict.iteritems(), key=snd)
    return fst(min_response).capitalize()
Example #3
0
 def matcher(token_tuple):
     token_type = fst(token_tuple)
     token_value = snd(token_tuple)
     should_be_discarded = not token_value or \
                           token_type == NUMBER or \
                           token_type == STRING or \
                           token_type == N_TOKENS or \
                           any(token_value.startswith(quot) and token_value.endswith(quot) for quot in QUOTES)
     return should_be_discarded
Example #4
0
def clean_tokens(readline):
    def matcher(token_tuple):
        token_type = fst(token_tuple)
        token_value = snd(token_tuple)
        should_be_discarded = not token_value or \
                              token_type == NUMBER or \
                              token_type == STRING or \
                              token_type == N_TOKENS or \
                              any(token_value.startswith(quot) and token_value.endswith(quot) for quot in QUOTES)
        return should_be_discarded

    return map(lambda t: (fst(t), snd(t)), ifilterfalse(matcher, generate_tokens(readline)))
def greedy_motif_search(dna_strings, k, profile_builder=build_profile_columns,
                        initial_motifs_builder=first_kmer_builder):
    best_motifs = initial_motifs_builder(dna_strings, k)
    for kmer in all_possible_kmers_from_text(fst(dna_strings), k):
        current_score = matrix_score(best_motifs)
        motifs = [kmer]
        for dna_string in tail(dna_strings):
            profile = profile_builder(motifs)
            additional_motif = most_probable_kmer(dna_string, k, profile)
            motifs.append(additional_motif)
        if current_score > matrix_score(motifs):
            best_motifs = motifs
    return best_motifs
 def column_consensus(column):
     return fst(top_by_snd_and_ignore(((nucleotide, column.count(nucleotide))
                                       for nucleotide in column), descending=True))
 def mapper(read):
     return '({0}|{1})'.format(fst(read), snd(read))
def most_probable_kmer(dna_string, k, probabilities):
    all_kmers = all_possible_kmers_from_text(dna_string, k)
    return fst(top_by_snd_and_ignore(list((kmer, probability_score(kmer, probabilities))
                                          for kmer in all_kmers), descending=True))
def space_paired_read(read, d):
    return fst(read) + ' ' * d + snd(read)
Example #10
0
def space_paired_read(read, d):
    return fst(read) + ' ' * d + snd(read)