Example #1
0

if __name__ == '__main__':
    MODE = 10
    LATENT_DIM = 100
    IMAGE_SIZE = 64
    DATASET_LEN = 20000
    PRELOAD_LEN = 20000
    EPOCHS = 50000
    device = 'cuda'
    gloss_cfg = LossConfig('BCE')
    dloss_cfg = LossConfig('BCE')

    sampler_cfg = SamplerConfig(
        name='Onehot',
        out_shape=PRELOAD_LEN,
        latent_dim=LATENT_DIM,
        random_sampling=False
    )
    goptim_cfg = OptimConfig('Adam', lr=0.0002)
    doptim_cfg = OptimConfig('Adam', lr=0.0002)

    dataset_cfg = DatasetConfig('CelebA', dataset_len=DATASET_LEN, image_size=IMAGE_SIZE, preload_len=PRELOAD_LEN)
    loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True)

    gen_cfg = ModelConfig(
        'EDCG', input_size=LATENT_DIM,
        hidden_size=128, output_size=3,
        data_num=PRELOAD_LEN, out_64=IMAGE_SIZE == 64
    )
    dis_cfg = ModelConfig('DCD', input_size=3, hidden_size=64, output_size=1, out_64=IMAGE_SIZE == 64)
Example #2
0
        save_image(img, os.path.join(logger.img_dir, 'gen_{0:05d}.jpg'.format(postfix)))


if __name__ == '__main__':
    MODE = 10
    LATENT_DIM = 100
    IMAGE_SIZE = 32
    DATASET_LEN = 20000
    EPOCHS = 30000
    device = 'cuda'
    gloss_cfg = LossConfig('BCE')
    dloss_cfg = LossConfig('BCE')

    sampler_cfg = SamplerConfig(
        name='Onehot',
        out_shape=DATASET_LEN,
        latent_dim=LATENT_DIM
    )
    goptim_cfg = OptimConfig('Adam', lr=1e-3)
    doptim_cfg = OptimConfig('Adam', lr=1e-3)

    dataset_cfg = DatasetConfig('MNIST', train=True, stack=False, along_width=False, size=32)
    loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True)

    gen_cfg = ModelConfig('EDCG', input_size=LATENT_DIM, hidden_size=128, output_size=1, data_num=DATASET_LEN)
    dis_cfg = ModelConfig('DCD', input_size=1, hidden_size=128, output_size=1)

    train_data_cfg = DatasetConfig('MNIST', stack=False, train=True, along_width=False)
    test_data_cfg = DatasetConfig('MNIST', stack=False, train=False, along_width=False)

    train_loader = LoaderConfig('naive', batch_size=128, shuffle=True)
Example #3
0
            os.path.join(logger.img_dir,
                         'sampler_modes_{0:05d}.jpg'.format(postfix)))
        plt.close()


if __name__ == '__main__':
    dataset_len = 2000
    mode = 20
    latent_dim = 10

    device = 'cuda'
    gloss_cfg = LossConfig('BCE')
    dloss_cfg = LossConfig('BCE')

    sampler_cfg = SamplerConfig(
        name='Onehot',
        out_shape=dataset_len,
    )

    goptim_cfg = OptimConfig('Adam', lr=1e-3)
    doptim_cfg = OptimConfig('Adam', lr=1e-3)

    dataset_cfg = DatasetConfig('Spiral',
                                mode=mode,
                                sig=1,
                                num_per_mode=dataset_len // mode,
                                return_idx=True)
    # dataset_cfg = DatasetConfig('GMM', mode=mode, sig=1, num_per_mode=dataset_len // mode, return_idx=True)
    loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True)

    gen_cfg = ModelConfig('MLG',
                          input_size=latent_dim,
            os.path.join(logger.img_dir, 'embed_{0:05d}.jpg'.format(postfix)))
        plt.close()


if __name__ == '__main__':
    DATASET_LEN = 2000
    MODE = 20
    LATENT_DIM = 10
    GAN_EPOCHS = 40000

    device = 'cuda'
    gloss_cfg = LossConfig('BCE')
    dloss_cfg = LossConfig('BCE')

    sampler_cfg = SamplerConfig(
        name='Onehot',
        out_shape=DATASET_LEN,
    )

    goptim_cfg = OptimConfig('Adam', lr=1e-3)
    doptim_cfg = OptimConfig('Adam', lr=1e-3)

    dataset_cfg = DatasetConfig('Spiral',
                                mode=MODE,
                                sig=1,
                                num_per_mode=DATASET_LEN // MODE,
                                return_idx=True)
    # dataset_cfg = DatasetConfig('GMM', mode=mode, sig=1, num_per_mode=dataset_len // mode, return_idx=True)
    loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True)

    gen_cfg = ModelConfig('EMLG',
                          input_size=LATENT_DIM,
Example #5
0
        plt.scatter(self.dataset.data[:, 0], self.dataset.data[:, 1], s=1, alpha=0.3)
        plt.savefig(os.path.join(logger.img_dir, 'scatter_gen_{}.jpg'.format(iter_num)))
        plt.close()


if __name__ == '__main__':
    dataset_len = 2000
    mode = 20
    latent_dim = 10

    device = 'cuda'
    gloss_cfg = LossConfig('BCE')
    dloss_cfg = LossConfig('BCE')

    sampler_cfg = SamplerConfig(
        name='Gaussian',
        out_shape=latent_dim,
    )

    goptim_cfg = OptimConfig('Adam', lr=1e-3)
    doptim_cfg = OptimConfig('Adam', lr=1e-3)

    dataset_cfg = DatasetConfig('Spiral', mode=mode, sig=1, num_per_mode=dataset_len // mode)
    # dataset_cfg = DatasetConfig('GMM', mode=mode, sig=1, num_per_mode=dataset_len // mode)
    loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True)

    gen_cfg = ModelConfig('MLG', input_size=latent_dim, hidden_size=32, output_size=2)
    dis_cfg = ModelConfig('MLD', input_size=2, hidden_size=32, output_size=1)

    gan_cfg = GanConfig(
        name='Vanilla', gen_cfg=gen_cfg, dis_cfg=dis_cfg,
        gen_step=1, dis_step=1, gan_epoch=15000, loader_cfg=loader_cfg,
Example #6
0
if __name__ == '__main__':
    dataset_len = 2000
    mode = 10
    latent_dim = 10

    device = 'cuda'
    gloss_cfg = LossConfig('BCE')
    dloss_cfg = LossConfig('BCE')

    sampler_loss_cfg = LossConfig('MSE')
    sampler_optim_cfg = OptimConfig('Adam', lr=0.001)
    sampler_cfg = SamplerConfig(
        name='Learning',
        out_shape=latent_dim,
        data_num=dataset_len,
        batch_size=2000,
        epoch=50,
        alpha=0,
        loss_cfg=sampler_loss_cfg,
        optim_cfg=sampler_optim_cfg,
    )

    goptim_cfg = OptimConfig('Adam', lr=1e-3)
    doptim_cfg = OptimConfig('Adam', lr=1e-3)

    # dataset_cfg = DatasetConfig('Spiral', mode=mode, sig=1, num_per_mode=dataset_len // mode)
    dataset_cfg = DatasetConfig('GMM',
                                mode=mode,
                                sig=1,
                                num_per_mode=dataset_len // mode)
    loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True)