Example #1
0
    def invoke(self):
        response = self.lambda_client.invoke(
            FunctionName=self.driver_lambda_name,
            InvocationType='RequestResponse',
            Payload=json.dumps({}))

        logger.info("Finished executing this job: %s" % response)
Example #2
0
    def __init__(self, args):
        logger.info('Initializing')
        self.args = args

        # Load config
        self.config = load_config()

        # Get selected detector
        if self.config['object_detection']['use_tensorflow']:
            self.detector = TensorFlowDetector()
            self.detector_class = TensorFlowDetector
            self.detector_config = self.config['object_detection'][
                'tensorflow']

        # Load label maps
        self.categories = json.load(open(self.config['data']['label_map'],
                                         'r')).get('classes')
        self.categories = [{
            'id': cat['id'],
            'name': cat['name']
        } for cat in self.categories]
        self.road_condition_label = TensorFlowRecognizer.load_recognizer_label(
        )

        # Create dicts for simple translation between name and id
        self.cat2id = {cat['name']: cat['id'] for cat in self.categories}
        self.id2cat = {cat['id']: cat['name'] for cat in self.categories}

        # Initialize vars
        self.per_class_detections = None
        self.all_detections = None
        self.all_recognitions = None
        self.prepare_dicts()
Example #3
0
    def get_all_input_keys(self, static_job_info):
        # Returns all input keys to be processed: a list of format obj where obj is a map of {'Key': ..., 'Size': ...}
        all_keys = []
        input_table_name = static_job_info[StaticVariables.INPUT_SOURCE_FN]
        response = self.client.describe_table(TableName=input_table_name)
        number_of_records = response['Table']['ItemCount']
        if number_of_records == 0:
            logger.warning("Number of live records in DynamoDB is 0. "
                           "Note that DynamoDB updates this number every 6 hours.")
            logger.info("The average size of one record will be assumed to be maximum")
            # The maximum size of a DynamoDB item is 400KB.
            one_record_avg_size = 400 * 1024
        else:
            one_record_avg_size = response['Table']['TableSizeBytes'] / number_of_records

        input_partition_key = static_job_info[StaticVariables.INPUT_PARTITION_KEY_DYNAMODB]
        input_sort_key = static_job_info[StaticVariables.INPUT_SORT_KEY_DYNAMODB] \
            if StaticVariables.INPUT_SORT_KEY_DYNAMODB in static_job_info else None

        projection_expression = input_partition_key[0]
        if input_sort_key is not None:
            projection_expression += ",%s" % input_sort_key[0]

        response = self.client.scan(TableName=input_table_name, ProjectionExpression=projection_expression)
        for record in response['Items']:
            record_key = {input_partition_key[0]: record[input_partition_key[0]][input_partition_key[1]]}
            if input_sort_key is not None:
                record_key[input_sort_key[0]] = record[input_sort_key[0]][input_sort_key[1]]

            all_keys.append({'Key': record_key, 'Size': int(one_record_avg_size)})

        return all_keys
Example #4
0
def get_source_files():
    logger.info("WebUI: Received request for path /get-source-files")
    job_name = request.args.get('job-name')
    is_local_testing = os.environ.get(
        "local_testing") == 'True' or os.environ.get("local_testing") == 'true'
    if is_local_testing:
        local_endpoint_url = 'http://localhost:4572'
        client = boto3.client('s3',
                              aws_access_key_id='',
                              aws_secret_access_key='',
                              region_name=StaticVariables.DEFAULT_REGION,
                              endpoint_url=local_endpoint_url)
    else:
        client = boto3.client('s3')
    response = client.get_object(
        Bucket=StaticVariables.S3_JOBS_INFORMATION_BUCKET_NAME,
        Key=(StaticVariables.S3_UI_REGISTERED_JOB_SOURCE_INFO_PATH % job_name))
    contents = response['Body'].read()
    contents_json = json.loads(contents)
    job_source_info = contents_json['sourceInfo']
    main = contents_json['main']
    source_files = {}
    for source_file_info in job_source_info:
        response = client.get_object(
            Bucket=StaticVariables.S3_JOBS_INFORMATION_BUCKET_NAME,
            Key=source_file_info["location"])
        contents = response['Body'].read()
        string_content = contents.decode("utf-8")
        source_files[source_file_info["filePath"]] = string_content

    response = {'main': main, 'sourceFiles': source_files}
    return jsonify(response)
Example #5
0
 def create_s3_event_source_notification(self, bucket, prefix):
     response = self.s3.put_bucket_notification_configuration(
         Bucket=bucket,
         NotificationConfiguration={
             'LambdaFunctionConfigurations': [{
                 'Events': ['s3:ObjectCreated:*'],
                 'LambdaFunctionArn':
                 self.function_arn,
                 'Filter': {
                     'Key': {
                         'FilterRules': [
                             {
                                 'Name': 'prefix',
                                 'Value': prefix
                             },
                         ]
                     }
                 }
             }],
             # 'TopicConfigurations' : [],
             # 'QueueConfigurations' : []
         })
     logger.info(
         "Creating S3 event notification to Lambda function %s - response: %s"
         % (self.function_name, response))
Example #6
0
def get_num_completed_operators():
    job_name = request.args.get('job-name')
    submission_time = request.args.get('submission-time')
    logger.info(
        "WebUI: Received request for path /num-completed-operators with parameters: %s, %s"
        % (job_name, submission_time))

    is_local_testing = os.environ.get(
        "local_testing") == 'True' or os.environ.get("local_testing") == 'true'
    input_handler_s3_obj = input_handler_s3.InputHandlerS3(
        in_lambda=False, is_local_testing=is_local_testing)
    s3_stage_conf_path = StaticVariables.S3_UI_STAGE_CONFIGURATION_PATH % (
        job_name, submission_time)
    stage_config = json.loads(
        input_handler_s3_obj.read_value(
            StaticVariables.S3_JOBS_INFORMATION_BUCKET_NAME,
            s3_stage_conf_path, None))

    stage_state_obj = stage_state.StageState(in_lambda=False,
                                             is_local_testing=is_local_testing)
    stage_states = stage_state_obj.read_state_table(
        StaticVariables.STAGE_STATE_DYNAMODB_TABLE_NAME %
        (job_name, submission_time))
    result = {}
    for stage_id, stage_num_completed in stage_states.items():
        result[stage_id] = [
            stage_num_completed, stage_config[stage_id]["num_operators"]
        ]
    return jsonify(result)
Example #7
0
    def set_up_local_input_data(self, input_file_paths, static_job_info):
        input_bucket = static_job_info[StaticVariables.INPUT_SOURCE_FN]

        self.client.create_bucket(Bucket=input_bucket)
        s3_bucket_exists_waiter = self.client.get_waiter('bucket_exists')
        s3_bucket_exists_waiter.wait(Bucket=input_bucket)
        self.client.put_bucket_acl(
            ACL='public-read-write',
            Bucket=input_bucket,
        )

        for i in range(len(input_file_paths)):
            input_file_path = input_file_paths[i]
            if os.path.isdir(input_file_path):
                continue
            if StaticVariables.INPUT_PREFIX_FN in static_job_info:
                prefix = static_job_info[StaticVariables.INPUT_PREFIX_FN]
                key = '%s/input-%s' % (prefix, str(i + 1))
            else:
                key = 'input-%s' % (str(i + 1))
            self.client.upload_file(Filename=input_file_path,
                                    Bucket=input_bucket,
                                    Key=key)

        logger.info("Set up local input data successfully")
Example #8
0
 def create_lambda_function(self, stage_id, total_num_stages,
                            submission_time, coordinator_lambda_name,
                            num_reducers):
     runtime = 'python3.7'
     response = self.lambda_client.create_function(
         FunctionName=self.function_name,
         Code={"ZipFile": open(self.code_file, 'rb').read()},
         Handler=self.handler,
         Role=self.role,
         Runtime=runtime,
         Description=self.function_name,
         Environment={
             'Variables': {
                 "serverless_mapreduce_role": self.role,
                 "stage_id": str(stage_id),
                 "total_num_stages": str(total_num_stages),
                 'submission_time': str(submission_time),
                 'coordinator_lambda_name': str(coordinator_lambda_name),
                 "num_reducers": str(num_reducers)
             }
         },
         MemorySize=self.memory,
         Timeout=self.timeout,
         TracingConfig={'Mode': 'PassThrough'})
     self.function_arn = response['FunctionArn']
     logger.info("Creation of Lambda function %s - response: %s" %
                 (self.function_name, response))
    def load_model(self):
        """ Load the TensorFlow model into memory and get tensor names
        """

        logger.info('Loading model')

        # Set gpu device for process
        os.environ["CUDA_VISIBLE_DEVICES"] = str(self.config['gpu_id'])

        # with tf.device('/gpu:{}'.format(self.config['gpu_id'])):
        recognition_graph = tf.Graph()

        with recognition_graph.as_default():
            rc_graph_def = tf.GraphDef()

            with tf.gfile.GFile(self.config['graph_path'], 'rb') as fid:
                serialized_graph = fid.read()
                rc_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(rc_graph_def, name='')

            # Save session for later access
            self.sess = tf.Session(graph=recognition_graph)

        self.input_operation = recognition_graph.get_operation_by_name(
            self.config['input_layer'])
        self.output_operation = recognition_graph.get_operation_by_name(
            self.config['output_layer'])

        logger.info('Model loaded')
Example #10
0
    def create_progress_table(self, table_name):
        waiter = self.client.get_waiter('table_not_exists')
        waiter.wait(TableName=table_name)
        self.client.create_table(
            AttributeDefinitions=[{
                'AttributeName': 'stage_id',
                'AttributeType': 'N'
            }],
            TableName=table_name,
            KeySchema=[{
                'AttributeName': 'stage_id',
                'KeyType': 'HASH'
            }],
            ProvisionedThroughput={
                'ReadCapacityUnits': 100,
                'WriteCapacityUnits': 100
            }
        )

        # Wait until the created table becomes active
        response = self.client.describe_table(TableName=table_name)['Table']['TableStatus']
        while response != 'ACTIVE':
            time.sleep(1)
            response = self.client.describe_table(TableName=table_name)['Table']['TableStatus']

        logger.info("Stage progress table created successfully")
Example #11
0
    def __init__(self):
        logger.info('[ApiSncf] - Instanciation of ApiSncf class')

        load_dotenv(dotenv_path='utils/.env')
        self.url_api = 'https://api.sncf.com/v1/coverage/sncf/stop_areas?count=1000'
        self.token_auth = os.environ.get('TOKEN_AUTH')
        self.filename_export = 'stop_areas'
        self.request_api_sncf = None
        self.list_gares = []
Example #12
0
def get_map_reduce_outputs(bucket, job_name, stage_ids):
    keys_bins = []
    for stage_id in stage_ids:
        prefix = "%s/%s-%s/" % (job_name, StaticVariables.OUTPUT_PREFIX, stage_id)
        for obj in s3_client.list_objects(Bucket=bucket, Prefix=prefix)["Contents"]:
            if not obj["Key"].endswith('/'):
                keys_bins.append([obj["Key"]])

    logger.info("Key Batches for stage %s is: %s" % (stage_ids[0], str(keys_bins)))
    return keys_bins
Example #13
0
 def initialise_in_degree_table(self, table_name, in_degrees):
     for pipeline_id, in_degree in in_degrees.items():
         self.client.put_item(
             TableName=table_name,
             Item={
                 'pipeline_id': {'N': str(pipeline_id)},
                 'in_degree': {'N': str(in_degree)}
             }
         )
     logger.info("In degree table initialised successfully")
Example #14
0
    def delete_state_table(self, table_name):
        existing_tables = self.client.list_tables()['TableNames']

        if table_name in existing_tables:
            self.client.delete_table(TableName=table_name)

            logger.info("Stage state table deleted successfully")
            return

        logger.info("Stage state table has not been created")
    def load_label(self):
        """ Load road condition label map
        """

        logger.info('Loading label map')

        proto_as_ascii_lines = tf.gfile.GFile(
            self.config['label_map']).readlines()
        for l in proto_as_ascii_lines:
            self.label.append(l.rstrip())
Example #16
0
 def set_up_bucket(self, bucket_name):
     self.s3_client.create_bucket(Bucket=bucket_name)
     s3_bucket_exists_waiter = self.s3_client.get_waiter('bucket_exists')
     s3_bucket_exists_waiter.wait(Bucket=bucket_name)
     if self.static_job_info[StaticVariables.LOCAL_TESTING_FLAG_FN]:
         self.s3_client.put_bucket_acl(
             ACL='public-read-write',
             Bucket=bucket_name,
         )
     logger.info("%s Bucket created successfully" % bucket_name)
Example #17
0
    def run(self):
        # 1. Create the aws_lambda functions
        function_lambdas, invoking_pipelines_info, num_outputs = self._create_lambdas(
        )

        cur_output_handler = output_handler.get_output_handler(
            self.static_job_info[StaticVariables.OUTPUT_SOURCE_TYPE_FN],
            self.static_job_info[StaticVariables.LOCAL_TESTING_FLAG_FN],
            self.is_serverless)
        cur_output_handler.create_output_storage(self.static_job_info,
                                                 self.submission_time)

        # Execute
        # 2. Invoke Mappers asynchronously
        self._invoke_pipelines(invoking_pipelines_info)

        # 3. Calculate costs - Approx (since we are using exec time reported by our func and not billed ms)
        StaticVariables.JOB_START_TIME = time.time()
        logger.info("PERFORMANCE INFO: Job setup time: %s" %
                    (StaticVariables.JOB_START_TIME -
                     StaticVariables.SETUP_START_TIME))
        self._calculate_cost(num_outputs, cur_output_handler,
                             invoking_pipelines_info)

        # 4. Delete the function lambdas
        for function_lambda in function_lambdas:
            function_lambda.delete_function()

        if StaticVariables.OPTIMISATION_FN not in self.static_job_info \
                or not self.static_job_info[StaticVariables.OPTIMISATION_FN]:
            self._update_duration()
            # 5. View one of the last stage executor's outputs
            # logger.info(cur_output_handler.get_output(3, self.static_job_info, self.submission_time))
        else:
            job_name = self.static_job_info[StaticVariables.JOB_NAME_FN]
            table_name = StaticVariables.STAGE_STATE_DYNAMODB_TABLE_NAME % (
                job_name, self.submission_time)
            self.map_phase_state.delete_state_table(table_name)

            in_degree_obj = in_degree.InDegree(
                in_lambda=self.is_serverless,
                is_local_testing=self.static_job_info[
                    StaticVariables.LOCAL_TESTING_FLAG_FN])
            in_degree_table_name = StaticVariables.IN_DEGREE_DYNAMODB_TABLE_NAME % (
                job_name, self.submission_time)
            in_degree_obj.delete_in_degree_table(in_degree_table_name)

            # metrics_bucket = StaticVariables.METRICS_BUCKET % job_name
            # self.delete_s3_objects(metrics_bucket, "")
            # self.s3_client.delete_bucket(Bucket=metrics_bucket)

        tear_down_time = time.time() - StaticVariables.TEAR_DOWN_START_TIME
        logger.info("PERFORMANCE INFO - Job tear down time: %s seconds" %
                    str(tear_down_time))
        return self.submission_time
Example #18
0
def delete_files(dirname, filenames):
    logger.info("At delete_files, the current working directory is %s" %
                str(os.getcwd()))
    for filename in filenames:
        if dirname == "":
            dst_file = filename
        else:
            dst_file = "%s/%s" % (dirname, filename)
        logger.info("The file to delete: %s" % str(dst_file))
        if os.path.exists(dst_file):
            os.remove(dst_file)
Example #19
0
def get_map_shuffle_outputs(num_bins, bucket, job_name, stage_id):
    keys_bins = [[] for _ in range(num_bins)]

    for bin_id in range(1, num_bins + 1):
        prefix = "%s/%s-%s/bin-%s/" % (job_name, StaticVariables.OUTPUT_PREFIX, stage_id, bin_id)
        objs = s3_client.list_objects(Bucket=bucket, Prefix=prefix)["Contents"]
        # logger.info("********************The number of items is: %s********************" % str(len(objs)))
        keys_bins[bin_id - 1] = [obj["Key"] for obj in objs]

    logger.info("Key Batches for stage %s is: %s" % (stage_id, str(keys_bins)))
    return keys_bins
Example #20
0
    def initialise_progress_table(self, table_name, num_stages):
        for i in range(1, num_stages + 1):
            self.client.put_item(
                TableName=table_name,
                Item={
                    'stage_id': {'N': str(i)},
                    'num_processed_keys': {'N': str(0)},
                    'total_num_keys': {'N': str(0)}
                }
            )

        logger.info("Stage progress table initialised successfully")
Example #21
0
def set_up_local_input_data(static_job_info):
    if static_job_info[StaticVariables.LOCAL_TESTING_FLAG_FN]:
        cur_input_handler = input_handler.get_input_handler(static_job_info[StaticVariables.INPUT_SOURCE_TYPE_FN],
                                                            static_job_info[StaticVariables.LOCAL_TESTING_FLAG_FN])

        os.chdir(StaticVariables.PROJECT_WORKING_DIRECTORY)
        local_testing_input_path = static_job_info[StaticVariables.LOCAL_TESTING_INPUT_PATH]
        local_file_paths = glob.glob(local_testing_input_path + "**", recursive=True)
        logger.info("The current working directory for local file paths is: %s" % os.getcwd())
        logger.info("The list of local file paths: %s" % local_file_paths)
        cur_input_handler.set_up_local_input_data(local_file_paths, static_job_info)
        os.chdir(StaticVariables.LIBRARY_WORKING_DIRECTORY)
Example #22
0
def schedule_same_pipeline_next_stage(stage_configuration, stage_id, shuffling_bucket, job_name, submission_time):
    cur_stage_config = stage_configuration[str(stage_id)]
    next_stage_config = stage_configuration[str(stage_id + 1)]
    invoking_lambda_name = next_stage_config["invoking_lambda_name"]
    next_stage_num_operators = stage_configuration[str(stage_id + 1)]["num_operators"]

    if cur_stage_config["stage_type"] == 1:
        keys_bins = get_map_shuffle_outputs(next_stage_num_operators, shuffling_bucket, job_name, stage_id)
    else:
        keys_bins = get_map_reduce_outputs(shuffling_bucket, job_name, [stage_id])

    # keys_bin_size = len(keys_bins[0])
    # for i in range(1, len(keys_bins)):
    #     assert keys_bin_size == len(keys_bins[i])

    if StaticVariables.OPTIMISATION_FN not in static_job_info \
            or not static_job_info[StaticVariables.OPTIMISATION_FN]:
        stage_progress_obj = stage_progress.StageProgress(in_lambda=True,
                                                          is_local_testing=static_job_info[StaticVariables.LOCAL_TESTING_FLAG_FN])
        stage_progress_table_name = StaticVariables.STAGE_PROGRESS_DYNAMODB_TABLE_NAME % (job_name, submission_time)
        total_num_jobs = sum([len(keys_bin) for keys_bin in keys_bins])
        stage_progress_obj.update_total_num_keys(stage_progress_table_name, stage_id + 1, total_num_jobs)

    if next_stage_config["stage_type"] == 1:
        for i in range(len(keys_bins)):
            response = lambda_client.invoke(
                FunctionName=invoking_lambda_name,
                InvocationType='Event',
                Payload=json.dumps({
                    "keys": keys_bins[i],
                    "id": i + 1,
                    "load_data_from_input": False,
                    "function_pickle_path": next_stage_config["function_pickle_path"],
                    "combiner_function_pickle_path": next_stage_config["combiner_function_pickle_path"],
                    "partition_function_pickle_path": next_stage_config["partition_function_pickle_path"]
                })
            )

    else:
        for i in range(len(keys_bins)):
            response = lambda_client.invoke(
                FunctionName=invoking_lambda_name,
                InvocationType='Event',
                Payload=json.dumps({
                    "keys": keys_bins[i],
                    "id": i + 1,
                    "load_data_from_input": False,
                    "function_pickle_path": next_stage_config["function_pickle_path"]
                })
            )

    logger.info("All operators finished in stage %s, next stage: number of operators scheduled: %s"
          % (stage_id, next_stage_num_operators))
    def __init__(self):
        logger.info('Initializing')

        self.config = load_config()['road_condition']

        # Create empty attribute fields
        self.sess = None
        self.input_operation = None
        self.output_operation = None

        # Load label
        self.label = []
        self.load_label()
Example #24
0
def copy_job_function(function):
    logger.info("Library working directory is %s" % library_working_dir)
    inspect_object = inspect.getfile(function)
    rel_filepath = os.path.relpath(inspect_object)
    logger.info("The path of the function is %s" % rel_filepath)
    # dst_file = "%s/%s/%s" % (library_working_dir, "user_job_3", "map.py")

    dst_file = "%s/%s" % (library_working_dir, rel_filepath)
    if os.path.normpath(inspect_object) != os.path.normpath(dst_file):
        os.makedirs(os.path.dirname(dst_file), exist_ok=True)
        shutil.copy2(rel_filepath, dst_file)

    return rel_filepath
Example #25
0
 def create_output_storage(self, static_job_info, submission_time):
     output_bucket = static_job_info[StaticVariables.SHUFFLING_BUCKET_FN] \
         if StaticVariables.OUTPUT_SOURCE_FN not in static_job_info \
         else static_job_info[StaticVariables.OUTPUT_SOURCE_FN]
     self.client.create_bucket(Bucket=output_bucket)
     s3_bucket_exists_waiter = self.client.get_waiter('bucket_exists')
     s3_bucket_exists_waiter.wait(Bucket=output_bucket)
     if static_job_info[StaticVariables.LOCAL_TESTING_FLAG_FN]:
         self.client.put_bucket_acl(
             ACL='public-read-write',
             Bucket=output_bucket,
         )
     logger.info("Finished setting up output bucket")
Example #26
0
    def load_label_map(self):
        """ Load the label map.
        :return: TensorFlow specific label map
        """

        logger.info('Loading label map')

        label_map = label_map_util.load_labelmap(self.config_tf['label_map'])
        categories = label_map_util.convert_label_map_to_categories(
            label_map,
            max_num_classes=self.config_tf['max_class_id'],
            use_display_name=True)
        return label_map_util.create_category_index(categories)
Example #27
0
    def check_job_finish(self, completed_executors, num_final_dst_operators,
                         static_job_info, submission_time):
        last_stage_keys = []
        reducer_metadata = []
        lambda_time = 0

        for record in completed_executors:
            last_stage_keys.append(
                record[OutputHandlerDynamoDB.METADATA_TABLE_KEY_NAME]['S'])
            reducer_metadata.append(
                json.loads(record[
                    OutputHandlerDynamoDB.METADATA_TABLE_COLUMN_NAME]['S']))

        if len(last_stage_keys) == num_final_dst_operators:
            output_table_name_prefix = static_job_info[StaticVariables.SHUFFLING_BUCKET_FN] \
                if StaticVariables.OUTPUT_SOURCE_FN not in static_job_info \
                else static_job_info[StaticVariables.OUTPUT_SOURCE_FN]
            output_table_name = "%s-%s" % (output_table_name_prefix,
                                           submission_time)
            job_name = static_job_info[StaticVariables.JOB_NAME_FN]
            metadata_table_name = "%s-%s-metadata" % (job_name,
                                                      submission_time)
            metadata_table_size = self.client.describe_table(
                TableName=metadata_table_name)['Table']['TableSizeBytes']
            output_table_info = self.client.describe_table(
                TableName=output_table_name)['Table']
            output_table_item_count = output_table_info['ItemCount']
            output_table_size = output_table_info['TableSizeBytes']
            dynamodb_size = output_table_size + metadata_table_size
            for data in reducer_metadata:
                # Even though metadata processing time is written as processingTime,
                # AWS does not accept uppercase letter metadata key
                lambda_time += float(data['processingTime'])

            num_write_ops = len(last_stage_keys) + output_table_item_count
            num_read_ops = 0
            # DynamoDB costs $0.25/GB/month, if approximated by 3 cents/GB/month, then per hour it is $0.000052/GB
            storage_cost = 1 * 0.0000521574022522109 * (
                dynamodb_size / 1024.0 / 1024.0 / 1024.0)
            # DynamoDB write # $1.25/1000000
            write_cost = num_write_ops * 1.25 / 1000000
            # DynamoDB read # $0.25/1000000
            read_cost = num_read_ops * 0.25 / 1000000

            logger.info("Last stage number of write ops: %s" % num_write_ops)
            logger.info("Last stage number of read ops: %s" % num_read_ops)

            return lambda_time, storage_cost, write_cost, read_cost

        return -1, -1, -1, -1
Example #28
0
    def increment_current_stage_id(self, table_name):
        response = self.client.update_item(
            TableName=table_name,
            Key={'stage_id': {
                'N': str(-1)
            }},
            UpdateExpression="set current_stage_id = current_stage_id + :val",
            ExpressionAttributeValues={':val': {
                'N': str(1)
            }},
            ReturnValues="UPDATED_NEW")

        logger.info("Current stage id incremented successfully")
        return response
Example #29
0
 def add_lambda_permission(self, s_id, bucket):
     try:
         response = self.lambda_client.add_permission(
             Action='lambda:InvokeFunction',
             FunctionName=self.function_name,
             Principal='s3.amazonaws.com',
             StatementId='%s' % s_id,
             SourceArn='arn:aws:s3:::' + bucket)
         logger.info(
             "Adding permission to Lambda function %s - response: %s" %
             (self.function_name, response))
     except Exception as e:
         logger.info("Failed to add permission to Lambda function %s: %s" %
                     (self.function_name, e))
Example #30
0
 def update_function(self):
     """
     Update aws_lambda function
     """
     response = self.lambda_client.update_function_code(
         FunctionName=self.function_name,
         ZipFile=open(self.code_file, 'rb').read(),
         Publish=True)
     updated_arn = response['FunctionArn']
     # parse arn and remove the release number (:n)
     arn = ":".join(updated_arn.split(':')[:-1])
     self.function_arn = arn
     logger.info("Update of Lambda function %s - response: %s" %
                 (self.function_name, response))