l_init = mydevice.load(l_init) q_label = mydevice.load(q_label) p_label = mydevice.load(p_label) return q_init,p_init,q_label,p_label,l_init def print_dict(name,thisdict): print(name,'dict ============== ') for key,value in thisdict.items(): print(key,':',value) if __name__=='__main__': _ = mydevice() _ = system_logs(mydevice) system_logs.print_start_logs() torch.set_default_dtype(torch.float64) #print('checking pbc method ... wait a minute ') #check_pbc() torch.manual_seed(23841) traindict = {"loadfile" : None, # to load previously trained model "nn_mode" : 'hf', # 'hf' or 'ff' predict hamiltonian or predict force "force_clip": 5, # clamp the force within a range "grad_clip" : 10, # clamp the gradient for neural net parameters "tau_long" : 0.1, # the large time step "n_chain" : 1, # number of times to do integration before cal the loss "ngrids" : 6, # for multibody interactions "b" : 0.2, # grid lattice constant for multibody interactions
# python ML_trainer.py ../data/gen_by_ML/basename/MD_config.dict ../data/gen_by_ML/basename/ML_config.dict argv = sys.argv MDjson_file = argv[1] MLjson_file = argv[2] MD_parameters.load_dict(MDjson_file) ML_parameters.load_dict(MLjson_file) seed = ML_parameters.seed torch.manual_seed(seed) torch.set_default_dtype(torch.float64) _ = system_logs(mydevice) # HK system_logs.print_start_logs() # HK # io varaiables train_filename = ML_parameters.train_filename val_filename = ML_parameters.valid_filename # read the same data test_filename = val_filename train_pts = ML_parameters.train_pts val_pts = ML_parameters.valid_pts test_pts = val_pts qp_weight = ML_parameters.qp_weight Lambda = ML_parameters.Lambda clip_value = ML_parameters.clip_value # crash checker variables rthrsh0 = MD_parameters.rthrsh0 pthrsh0 = MD_parameters.pthrsh0