Example #1
0
def gn_helper(planes):
    return nn.GroupNorm(args.group_norm, planes)
norm_layer = gn_helper

net = resnet18(num_classes = 10, norm_layer=norm_layer).to(device)
net = torch.nn.DataParallel(net)

print('Resuming from %s...' %(args.resume))
ckpt = torch.load('%s/best.pth' %(args.resume))
net.load_state_dict(ckpt['net'])

criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.SGD(net.parameters(), lr=args.lr)

_, teloader = prepare_test_data(args)

print("Random Attack...")
for i in range(args.epochs):
    r = np.random.normal(0.4914, 0.2023, (32, 32))
    g = np.random.normal(0.4822, 0.1994, (32, 32))
    b = np.random.normal(0.4465, 0.2010, (32, 32))
    img = np.stack([r, g, b], axis=0)
    tensor = torch.from_numpy(img).float()
    tensor = torch.clamp(tensor, 0, 1)
    adapt_single_tensor(net, tensor, optimizer, criterion, args.niter, args.batch_size)

    if i % 50 == 49:
        print("%d%%" % ((i + 1) * 100 / 5000))
        err_cls, correct_per_cls, total_per_cls = test(teloader, net, verbose=True, print_freq=0)
        print("Epoch %d Test error: %.3f" % (i, err_cls))
Example #2
0
best = 1
start_epoch = args.start_epoch

if args.resume is not None:
    print('Resuming from checkpoint..')
    ckpt = torch.load('%s/ckpt.pth' % (args.resume))
    net.load_state_dict(ckpt['net'])
    optimizer.load_state_dict(ckpt['optimizer'])
    start_epoch = ckpt['epoch'] + 1
    loss = torch.load('%s/loss.pth' % (args.resume))
    all_err_cls, all_err_ssh = loss

for epoch in range(start_epoch, args.epochs + 1):
    adjust_learning_rate(optimizer, epoch, args)
    train(trloader, epoch)
    err_cls = test(teloader, net)
    if False:
        teloader.dataset.switch_mode(False, True)
        err_ssh = test(teloader, ssh)
    else:
        err_ssh = 0

    all_err_cls.append(err_cls)
    all_err_ssh.append(err_ssh)
    torch.save((all_err_cls, all_err_ssh), args.outf + '/loss.pth')
    plot_epochs(all_err_cls, all_err_ssh, args.outf + '/loss.pdf')

    state = {
        'epoch': epoch,
        'args': args,
        'err_cls': err_cls,
Example #3
0
parser.add_argument('--resume', default=None)
parser.add_argument('--outf', default='.')
parser.add_argument('--none', action='store_true')

args = parser.parse_args()
my_makedir(args.outf)
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
net, ext, head, ssh = build_model(args)
teset, teloader = prepare_test_data(args)

print('Resuming from %s...' % (args.resume))
ckpt = torch.load('%s/ckpt.pth' % (args.resume))
net.load_state_dict(ckpt['net'])
teloader.dataset.switch_mode(True, False)
cls_initial, cls_correct, cls_losses = test(teloader, net, verbose=True)

print('Old test error cls %.2f' % (ckpt['err_cls'] * 100))
print('New test error cls %.2f' % (cls_initial * 100))

if args.none:
    rdict = {
        'cls_initial': cls_initial,
        'cls_correct': cls_correct,
        'cls_losses': cls_losses
    }
    torch.save(rdict,
               args.outf + '/%s_%d_none.pth' % (args.corruption, args.level))
    quit()

print('Old test error ssh %.2f' % (ckpt['err_ssh'] * 100))