Example #1
0
 def get_ts_loggers(self):
     loggers = {}
     restore_step = self.step.get()
     loggers['loss'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'loss.csv'), ['train', 'valid'],
                                        name='Loss',
                                        buffer_size=1,
                                        restore_step=restore_step)
     loggers['box_loss'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'box_loss.csv'), ['train', 'valid'],
                                            name='Box Loss',
                                            buffer_size=1,
                                            restore_step=restore_step)
     loggers['conf_loss'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'conf_loss.csv'), ['train', 'valid'],
                                             name='Confidence Loss',
                                             buffer_size=1,
                                             restore_step=restore_step)
     loggers['step_time'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'step_time.csv'),
                                             'step time (ms)',
                                             name='Step time',
                                             buffer_size=1,
                                             restore_step=restore_step)
     return loggers
Example #2
0
 def get_ts_loggers(self):
     loggers = {}
     restore_step = self.step.get()
     loggers['loss'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'loss.csv'), ['train', 'valid'],
                                        name='Loss',
                                        buffer_size=1,
                                        restore_step=restore_step)
     loggers['conf_loss'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'conf_loss.csv'), ['train', 'valid'],
                                             name='Confidence Loss',
                                             buffer_size=1,
                                             restore_step=restore_step)
     loggers['segm_loss'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'segm_loss.csv'), ['train', 'valid'],
                                             name='Segmentation Loss',
                                             buffer_size=1,
                                             restore_step=restore_step)
     loggers['dic'] = TimeSeriesLogger(os.path.join(self.logs_folder,
                                                    'dic.csv'),
                                       ['train', 'valid'],
                                       name='DiC',
                                       buffer_size=1,
                                       restore_step=restore_step)
     loggers['dic_abs'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'dic_abs.csv'), ['train', 'valid'],
                                           name='|DiC|',
                                           buffer_size=1,
                                           restore_step=restore_step)
     loggers['learn_rate'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'learn_rate.csv'),
                                              'learning rate',
                                              name='Learning rate',
                                              buffer_size=1,
                                              restore_step=restore_step)
     loggers['count_acc'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'count_acc.csv'), ['train', 'valid'],
                                             name='Count acc',
                                             buffer_size=1,
                                             restore_step=restore_step)
     loggers['step_time'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'step_time.csv'),
                                             'step time (ms)',
                                             name='Step time',
                                             buffer_size=1,
                                             restore_step=restore_step)
     loggers['box_loss'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'box_loss.csv'), ['train', 'valid'],
                                            name='Box Loss',
                                            buffer_size=1,
                                            restore_step=restore_step)
     loggers['gt_knob'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'gt_knob.csv'), ['box', 'segmentation'],
                                           name='GT mix',
                                           buffer_size=1,
                                           restore_step=restore_step)
     return loggers
Example #3
0
def _get_ts_loggers(model_opt):
    loggers = {}
    loggers['loss'] = TimeSeriesLogger(os.path.join(logs_folder, 'loss.csv'),
                                       ['train', 'valid'],
                                       name='Loss',
                                       buffer_size=1)
    loggers['iou'] = TimeSeriesLogger(
        os.path.join(logs_folder, 'iou.csv'),
        ['train soft', 'valid soft', 'train hard', 'valid hard'],
        name='IoU',
        buffer_size=1)
    loggers['step_time'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'step_time.csv'),
                                            'step time (ms)',
                                            name='Step time',
                                            buffer_size=1)

    return loggers
Example #4
0
def get_ts_loggers(model_opt, restore_step=0):
    loggers = {}
    loggers['loss'] = TimeSeriesLogger(os.path.join(logs_folder, 'loss.csv'),
                                       ['train', 'valid'],
                                       name='Loss',
                                       buffer_size=1,
                                       restore_step=restore_step)
    loggers['segm_loss'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'segm_loss.csv'), ['train', 'valid'],
                                            name='Segmentation Loss',
                                            buffer_size=1,
                                            restore_step=restore_step)
    loggers['iou'] = TimeSeriesLogger(
        os.path.join(logs_folder, 'iou.csv'),
        ['train soft', 'valid soft', 'train hard', 'valid hard'],
        name='IoU',
        buffer_size=1,
        restore_step=restore_step)
    loggers['wt_cov'] = TimeSeriesLogger(os.path.join(logs_folder,
                                                      'wt_cov.csv'),
                                         ['train', 'valid'],
                                         name='Weighted Coverage',
                                         buffer_size=1,
                                         restore_step=restore_step)
    loggers['unwt_cov'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'unwt_cov.csv'), ['train', 'valid'],
                                           name='Unweighted Coverage',
                                           buffer_size=1,
                                           restore_step=restore_step)
    loggers['dice'] = TimeSeriesLogger(os.path.join(logs_folder, 'dice.csv'),
                                       ['train', 'valid'],
                                       name='Dice',
                                       buffer_size=1,
                                       restore_step=restore_step)
    loggers['learn_rate'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'learn_rate.csv'),
                                             'learning rate',
                                             name='Learning rate',
                                             buffer_size=1,
                                             restore_step=restore_step)
    loggers['step_time'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'step_time.csv'),
                                            'step time (ms)',
                                            name='Step time',
                                            buffer_size=1,
                                            restore_step=restore_step)

    return loggers
 def get_ts_loggers(self):
     model_opt = self.model_opt
     loggers = {}
     restore_step = self.step.get()
     loggers['loss'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'loss.csv'), ['train', 'valid'],
                                        name='Loss',
                                        buffer_size=1,
                                        restore_step=restore_step)
     loggers['iou'] = TimeSeriesLogger(
         os.path.join(self.logs_folder, 'iou.csv'),
         ['train soft', 'valid soft', 'train hard', 'valid hard'],
         name='IoU',
         buffer_size=1,
         restore_step=restore_step)
     loggers['foreground_loss'] = TimeSeriesLogger(
         os.path.join(self.logs_folder,
                      'foreground_loss.csv'), ['train', 'valid'],
         name='Foreground loss',
         buffer_size=1,
         restore_step=restore_step)
     if model_opt['add_orientation']:
         loggers['orientation_ce'] = TimeSeriesLogger(
             os.path.join(self.logs_folder,
                          'orientation_ce.csv'), ['train', 'valid'],
             name='Orientation CE',
             buffer_size=1,
             restore_step=restore_step)
         loggers['orientation_acc'] = TimeSeriesLogger(
             os.path.join(self.logs_folder,
                          'orientation_acc.csv'), ['train', 'valid'],
             name='Orientation accuracy',
             buffer_size=1,
             restore_step=restore_step)
     loggers['step_time'] = TimeSeriesLogger(os.path.join(
         self.logs_folder, 'step_time.csv'),
                                             'step time (ms)',
                                             name='Step time',
                                             buffer_size=1,
                                             restore_step=restore_step)
     return loggers
Example #6
0
    log.info('Loading dataset')
    dataset = get_dataset(args.dataset, data_opt,
                          args.num_ex, int(args.num_ex / 10))

    sess = tf.Session()

    if args.restore:
        saver.restore(sess, ckpt_fname)
    else:
        sess.run(tf.initialize_all_variables())

    # Create time series logger
    if args.logs:
        loss_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'loss.csv'), ['train', 'valid'],
            name='Loss',
            buffer_size=1)
        iou_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'iou.csv'),
            ['train soft', 'valid soft', 'train hard', 'valid hard'],
            name='IoU',
            buffer_size=1)
        count_acc_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'count_acc.csv'),
            ['train', 'valid'],
            name='Count accuracy',
            buffer_size=1)
        learn_rate_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'learn_rate.csv'),
            'learning rate',
            name='Learning rate',
Example #7
0
    num_ex = inp_all.shape[0]
    log.info('{} training examples'.format(num_ex))

    inp_all_val = dataset['valid']['input']
    lab_seg_all_val = dataset['valid']['label_segmentation']
    lab_obj_all_val = dataset['valid']['label_objectness']
    num_ex_val = inp_all_val.shape[0]
    log.info('{} validation examples'.format(num_ex_val))

    # Create saver
    saver = tf.train.Saver(tf.all_variables())
    # saver = tf.train.Saver(tf.trainable_variables())

    # Create time series logger
    train_ce_logger = TimeSeriesLogger(os.path.join(exp_logs_folder,
                                                    'train_ce.csv'),
                                       'train_ce',
                                       buffer_size=25)
    valid_ce_logger = TimeSeriesLogger(os.path.join(exp_logs_folder,
                                                    'valid_ce.csv'),
                                       'valid_ce',
                                       buffer_size=2)
    log.info('Curves can be viewed at: http://{}/visualizer?id={}'.format(
        args.localhost, model_id))

    step = 0
    while step < loop_config['num_steps']:
        # Validation
        valid_ce = 0
        for st, nd in BatchIterator(num_ex_val,
                                    batch_size=64,
                                    progress_bar=False):
Example #8
0
    sess.run(tf.initialize_all_variables())
    saver = tf.train.Saver(tf.all_variables())

    task_name = 'vae_mnist_half'
    time_obj = datetime.datetime.now()
    model_id = timestr = '{}-{:04d}{:02d}{:02d}{:02d}{:02d}{:02d}'.format(
        task_name, time_obj.year, time_obj.month, time_obj.day,
        time_obj.hour, time_obj.minute, time_obj.second)
    results_folder = args.results
    logs_folder = args.logs
    exp_folder = os.path.join(results_folder, model_id)
    exp_logs_folder = os.path.join(logs_folder, model_id)

    # Create time series logger
    train_logger = TimeSeriesLogger(
        os.path.join(exp_logs_folder, 'train_logp.csv'), 'train_logp',
        buffer_size=25)
    valid_logger = TimeSeriesLogger(
        os.path.join(exp_logs_folder, 'valid_logp.csv'), 'valid_logp',
        buffer_size=2)
    log.info(
        'Curves can be viewed at: http://{}/visualizer?id={}'.format(
            args.localhost, model_id))

    random = np.random.RandomState(2)
    step = 0
    while step < loop_config['num_steps']:

        # Validation
        valid_log_px_lb = 0
        log.info('Running validation')
Example #9
0
    num_ex = inp_all.shape[0]
    log.info('{} training examples'.format(num_ex))

    inp_all_val = dataset['valid']['input']
    lab_seg_all_val = dataset['valid']['label_segmentation']
    lab_obj_all_val = dataset['valid']['label_objectness']
    num_ex_val = inp_all_val.shape[0]
    log.info('{} validation examples'.format(num_ex_val))

    # Create saver
    saver = tf.train.Saver(tf.all_variables())
    # saver = tf.train.Saver(tf.trainable_variables())

    # Create time series logger
    train_ce_logger = TimeSeriesLogger(
        os.path.join(exp_logs_folder, 'train_ce.csv'), 'train_ce',
        buffer_size=25)
    valid_ce_logger = TimeSeriesLogger(
        os.path.join(exp_logs_folder, 'valid_ce.csv'), 'valid_ce',
        buffer_size=2)
    log.info(
        'Curves can be viewed at: http://{}/visualizer?id={}'.format(
            args.localhost, model_id))

    step = 0
    while step < loop_config['num_steps']:
        # Validation
        valid_ce = 0
        for st, nd in BatchIterator(num_ex_val, batch_size=64, progress_bar=False):
            inp_batch = inp_all_val[st: nd]
            lab_seg_batch = lab_seg_all_val[st: nd]
Example #10
0
    # Model ID
    model_id = get_model_id('vae_mnist')
    results_folder = args.results
    exp_folder = os.path.join(results_folder, model_id)

    # Logger
    if args.logs:
        logs_folder = args.logs
        logs_folder = os.path.join(logs_folder, model_id)

        log = logger.get(os.path.join(logs_folder, 'raw'))

        # Create time series logger
        logp_logger = TimeSeriesLogger(os.path.join(logs_folder, 'logp.csv'),
                                       ['train logp', 'valid logp'],
                                       name='Log prob',
                                       buffer_size=1)
        henc_sparsity_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'henc_sparsity.csv'),
            'henc sparsity',
            name='Encoder hidden activation sparsity',
            buffer_size=1)
        hdec_sparsity_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'hdec_sparsity.csv'),
            'hdec sparsity',
            name='Decoder hidden activation sparsity',
            buffer_size=1)
        step_time_logger = TimeSeriesLogger(os.path.join(
            logs_folder, 'step_time.csv'),
                                            'step time (ms)',
                                            buffer_size=10)
Example #11
0
    task_name = 'draw_mnist'
    time_obj = datetime.datetime.now()
    model_id = timestr = '{}-{:04d}{:02d}{:02d}{:02d}{:02d}{:02d}'.format(
        task_name, time_obj.year, time_obj.month, time_obj.day,
        time_obj.hour, time_obj.minute, time_obj.second)

    results_folder = args.results
    logs_folder = args.logs
    exp_folder = os.path.join(results_folder, model_id)

    # Create time series logger
    if args.logs:
        exp_logs_folder = os.path.join(logs_folder, model_id)
        train_ce_logger = TimeSeriesLogger(
            os.path.join(exp_logs_folder, 'train_ce.csv'), 'train_ce',
            buffer_size=25)
        valid_ce_logger = TimeSeriesLogger(
            os.path.join(exp_logs_folder, 'valid_ce.csv'), 'valid_ce',
            buffer_size=2)
        step_time_logger = TimeSeriesLogger(
            os.path.join(exp_logs_folder, 'step_time.csv'), 'step time (ms)',
            buffer_size=25)
        log.info(
            'Curves can be viewed at: http://{}/visualizer?id={}'.format(
                args.localhost, model_id))

    random = np.random.RandomState(args.seed)

    while step < loop_config['num_steps']:
        # Validation
Example #12
0
def get_ts_loggers(model_opt, restore_step=0):
    loggers = {}
    loggers['loss'] = TimeSeriesLogger(os.path.join(logs_folder, 'loss.csv'),
                                       ['train', 'valid'],
                                       name='Loss',
                                       buffer_size=1,
                                       restore_step=restore_step)
    loggers['conf_loss'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'conf_loss.csv'), ['train', 'valid'],
                                            name='Confidence Loss',
                                            buffer_size=1,
                                            restore_step=restore_step)
    loggers['segm_loss'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'segm_loss.csv'), ['train', 'valid'],
                                            name='Segmentation Loss',
                                            buffer_size=1,
                                            restore_step=restore_step)
    loggers['iou'] = TimeSeriesLogger(
        os.path.join(logs_folder, 'iou.csv'),
        ['train soft', 'valid soft', 'train hard', 'valid hard'],
        name='IoU',
        buffer_size=1,
        restore_step=restore_step)
    loggers['wt_cov'] = TimeSeriesLogger(os.path.join(logs_folder,
                                                      'wt_cov.csv'),
                                         ['train', 'valid'],
                                         name='Weighted Coverage',
                                         buffer_size=1,
                                         restore_step=restore_step)
    loggers['unwt_cov'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'unwt_cov.csv'), ['train', 'valid'],
                                           name='Unweighted Coverage',
                                           buffer_size=1,
                                           restore_step=restore_step)
    loggers['dice'] = TimeSeriesLogger(os.path.join(logs_folder, 'dice.csv'),
                                       ['train', 'valid'],
                                       name='Dice',
                                       buffer_size=1,
                                       restore_step=restore_step)
    loggers['dic'] = TimeSeriesLogger(os.path.join(logs_folder, 'dic.csv'),
                                      ['train', 'valid'],
                                      name='DiC',
                                      buffer_size=1,
                                      restore_step=restore_step)
    loggers['dic_abs'] = TimeSeriesLogger(os.path.join(logs_folder,
                                                       'dic_abs.csv'),
                                          ['train', 'valid'],
                                          name='|DiC|',
                                          buffer_size=1,
                                          restore_step=restore_step)
    loggers['learn_rate'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'learn_rate.csv'),
                                             'learning rate',
                                             name='Learning rate',
                                             buffer_size=1,
                                             restore_step=restore_step)
    loggers['count_acc'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'count_acc.csv'), ['train', 'valid'],
                                            name='Count acc',
                                            buffer_size=1,
                                            restore_step=restore_step)
    loggers['step_time'] = TimeSeriesLogger(os.path.join(
        logs_folder, 'step_time.csv'),
                                            'step time (ms)',
                                            name='Step time',
                                            buffer_size=1,
                                            restore_step=restore_step)

    if model_opt['type'] == 'attention':
        loggers['box_loss'] = TimeSeriesLogger(os.path.join(
            logs_folder, 'box_loss.csv'), ['train', 'valid'],
                                               name='Box Loss',
                                               buffer_size=1,
                                               restore_step=restore_step)
        loggers['gt_knob'] = TimeSeriesLogger(os.path.join(
            logs_folder, 'gt_knob.csv'), ['box', 'segmentation'],
                                              name='GT mix',
                                              buffer_size=1,
                                              restore_step=restore_step)

    return loggers
Example #13
0
    log.info('Loading dataset')
    dataset = get_dataset(args.dataset, data_opt, args.num_ex,
                          int(args.num_ex / 10))

    sess = tf.Session()

    if args.restore:
        saver.restore(sess, ckpt_fname)
    else:
        sess.run(tf.initialize_all_variables())

    # Create time series logger
    if args.logs:
        loss_logger = TimeSeriesLogger(os.path.join(logs_folder, 'loss.csv'),
                                       ['train', 'valid'],
                                       name='Loss',
                                       buffer_size=1)
        iou_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'iou.csv'),
            ['train soft', 'valid soft', 'train hard', 'valid hard'],
            name='IoU',
            buffer_size=1)
        count_acc_logger = TimeSeriesLogger(os.path.join(
            logs_folder, 'count_acc.csv'), ['train', 'valid'],
                                            name='Count accuracy',
                                            buffer_size=1)
        learn_rate_logger = TimeSeriesLogger(os.path.join(
            logs_folder, 'learn_rate.csv'),
                                             'learning rate',
                                             name='Learning rate',
                                             buffer_size=10)
Example #14
0
    dataset = mnist.read_data_sets("../MNIST_data/", one_hot=True)
    m = get_model(None, device=device)
    sess = tf.Session()
    sess.run(tf.initialize_all_variables())

    # Logger
    if args.logs:
        logs_folder = args.logs
        logs_folder = os.path.join(logs_folder, model_id)

        log = logger.get(os.path.join(logs_folder, 'raw'))

        # Create time series logger
        ce_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'ce.csv'), ['train', 'valid'],
            name='Cross Entropy',
            buffer_size=1)
        acc_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'acc.csv'), ['train', 'valid'],
            name='Accuracy',
            buffer_size=1)
        step_time_logger = TimeSeriesLogger(
            os.path.join(logs_folder, 'step_time.csv'), 'step time (ms)',
            buffer_size=10)

        log_manager.register(log.filename, 'plain', 'Raw logs')
        log.info(
            'Curves can be viewed at: http://{}/deep-dashboard?id={}'.format(
                args.localhost, model_id))
    else:
        log = logger.get()
Example #15
0
    sess.run(tf.initialize_all_variables())
    saver = tf.train.Saver(tf.all_variables())

    task_name = 'vae_mnist_half'
    time_obj = datetime.datetime.now()
    model_id = timestr = '{}-{:04d}{:02d}{:02d}{:02d}{:02d}{:02d}'.format(
        task_name, time_obj.year, time_obj.month, time_obj.day, time_obj.hour,
        time_obj.minute, time_obj.second)
    results_folder = args.results
    logs_folder = args.logs
    exp_folder = os.path.join(results_folder, model_id)
    exp_logs_folder = os.path.join(logs_folder, model_id)

    # Create time series logger
    train_logger = TimeSeriesLogger(os.path.join(exp_logs_folder,
                                                 'train_logp.csv'),
                                    'train_logp',
                                    buffer_size=25)
    valid_logger = TimeSeriesLogger(os.path.join(exp_logs_folder,
                                                 'valid_logp.csv'),
                                    'valid_logp',
                                    buffer_size=2)
    log.info('Curves can be viewed at: http://{}/visualizer?id={}'.format(
        args.localhost, model_id))

    random = np.random.RandomState(2)
    step = 0
    while step < loop_config['num_steps']:

        # Validation
        valid_log_px_lb = 0
        log.info('Running validation')