def parse_spikes(self, to_parse): spikes = [] if isinstance(to_parse, list): spikes = to_parse elif 'file' in to_parse: if not self.f.exists(): inform('ERROR! Datafile %s does not exist (relative to %s)!'% (self.f.filename, getcwd()), indent=2, verbosity=0, underline='-') spikes = None elif not self.f.has_changed(): inform('ERROR! Datafile %s has not changed!' % self.f.filename, indent=2, verbosity=0, underline='-') spikes = None elif self.f.has_changed(): tv = self.f.get_timeseries() inform('Reading timeseries from: ', self.f, indent=1, verbosity=1) if 'spike detection' in to_parse: sd = to_parse['spike detection'] method = sd.get('method', 'threshold') threshold = float(sd.get('threshold', 0)) inform('Detecting spikes with method: ', method, indent=2, verbosity=1) spikes = ts.spikes_from_timeseries(tv, method=method, threshold=threshold) else: # file contains spike times spikes = tv else: inform('ERROR! Preexistent datafile %s has not been updated!' % self.f.filename, indent=2, verbosity=0, underline='-') spikes = [] return spikes
def parse_spikes(self, to_parse): if isinstance(to_parse, list): spikes = to_parse elif 'file' in to_parse: if self.f.has_changed(): tv = self.f.get_timeseries() inform('Reading timeseries from: ', self.f, indent=1, verbosity=1) if 'spike detection' in to_parse: sd = to_parse['spike detection'] method = sd.get('method', 'threshold') threshold = float(sd.get('threshold', 0)) inform('Detecting spikes with method: ', method, indent=2, verbosity=1) spikes = ts.spikes_from_timeseries(tv, method=method, threshold=threshold) else: inform('ERROR! Preexistent datafile %s has not been updated!' % self.f.filename, indent=2, verbosity=0, underline='-') spikes = [] return spikes
def parse_spikes(self, to_parse): if isinstance(to_parse, list): spikes = to_parse elif 'file' in to_parse: f = fn.FileNodeHelper(to_parse['file']) tv = f.get_timeseries() inform('Reading timeseries from:', f, indent=1) if 'spike detection' in to_parse: sd = to_parse['spike detection'] method = sd.get('method', 'threshold') threshold = float(sd.get('threshold', 0)) inform('Detecting spikes with method:', method, indent=2) spikes = ts.spikes_from_timeseries(tv, method=method, threshold=threshold) return spikes